The present work deals with m-th order compact Sobolev embeddings on a do- main Ω ⊆ Rn endowed with a probability measure ν and satisfying certain isoperi- metric inequality. We derive a condition on a pair of rearrangement-invariant spaces X(Ω, ν) and Y (Ω, ν) which suffices to guarantee a compact embedding of the Sobolev space V m X(Ω, ν) into Y (Ω, ν). The condition is given in terms of compactness of certain operator on representation spaces. This result is then applied to characterize higher-order compact Sobolev embeddings on concrete measure spaces, including John domains, Maz'ya classes of Euclidean domains and product probability spaces, among them the Gauss space is the most stan- dard example. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:304107 |
Date | January 2012 |
Creators | Slavíková, Lenka |
Contributors | Pick, Luboš, Nekvinda, Aleš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds