Return to search

Calculation of Scalar Isosurface Area and Applications

The problem of calculating iso-surface statistics in turbulent flows is interesting for a number of reasons, some of them being combustion modeling, entrainment through turbulent/non-turbulent interfaces, calculating mass flux through iso-scalar surfaces and mapping of scalar fields. A fundamental effect of fuid turbulence is to wrinkle scalar iso-surfaces. A review of the literature shows that iso-surface calculations have primarily been done with geometric methods, which have challenges when used to calculate surfaces that have high complexity, such as in turbulent flows. In this thesis, we propose an alternative integral method and test it against analytical solutions. We present a parallelized algorithm and code to enable in-simulation calculation of isosurface area. We then use this code to calculate area statistics for data obtained from Direct Numerical Simulations and make predictions about the variation of the iso-scalar surface area with Taylor Peclet numbers between 9.8 and 4429 and Taylor Reynolds numbers between 98 and 633.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1867
Date29 October 2019
CreatorsShete, Kedar Prashant
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0021 seconds