In this work, we generalize three famous results obtained by Schoenberg: I) the characterization of the continuous positive definite isotropic kernels defined on a real sphere; II) the characterization of the continuous positive definite radial kernels defined on an Euclidean space; III) the characterization of the continuous conditionally negative radial kernels defined on an Euclidean space. From this new approach, we reobtain several results in the literature and obtain some new ones as well. With the exception of S1 and R , we obtain necessary and sufficient conditions in order that these kernels be strictly positive definite and strictly conditionally negative definite. / Neste trabalho, nós generalizamos três resultados famosos obtidos por Schoenberg: I) a caracterização dos núcleos contínuos isotrópicos positivos definidos em esferas reais; II) a caracterização dos núcleos contínuos radiais positivos definidos em espaços Euclidianos; III) a caracterização dos núcleos contínuos radiais condicionalmente negativos definidos em espaços Euclidianos. A partir destas novas abordagens, reobtemos vários resultados da literatura assim como obtemos novos. Com a exceção de S1 e R, obtemos condições necessárias e suficientes para que estes núcleos sejam estritamente positivos definidos e estritamente condicionalmente negativos definidos.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10062019-145848 |
Date | 25 February 2019 |
Creators | Guella, Jean Carlo |
Contributors | Menegatto, Valdir Antonio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0017 seconds