This dissertation compares the parameter estimates obtained from two item response theory (IRT) models: the 1-PL IRT model and the MC1-PL IRT model. Several scenarios were explored in which both unidimensional and multidimensional item-level and personal-level data were used to generate the item responses. The Monte Carlo simulations mirrored the real-life application of the two correlated dimensions of Necessary Operations and Calculations in the basic mathematics domain. In all scenarios, the MC1-PL IRT model showed greater precision in the recovery of the true underlying item difficulty values and person theta values along each primary dimension as well as along a second general order factor. The fit statistics that are generally applied to the 1-PL IRT model were not sensitive to the multidimensional item-level structure, reinforcing the requisite assumption of unidimensionality when applying the 1-PL IRT model.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1223 |
Date | 08 December 2004 |
Creators | Spencer, Steven Gerry |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0017 seconds