In this thesis, seven multi-sensor data fusion based estimation techniques are investigated. All methods are compared in terms of their ability to fuse data from loop detectors and Bluetooth tracked probe vehicles to accurately estimate freeway traffic speed. In the first case study, data generated from a microsimulation model are used to assess how data fusion might perform with present day conditions, having few probe vehicles, and what sort of improvement might result from an increased proportion of vehicles carrying Bluetooth-enabled devices in the future. In the second case study, data collected from the real-world Bluetooth traffic monitoring system are fused with corresponding loop detector data and the results are compared against GPS collected probe vehicle data, demonstrating the feasibility of implementing data fusion for real-time traffic monitoring today. This research constitutes the most comprehensive evaluation of data fusion techniques for traffic speed estimation known to the author.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/30172 |
Date | 01 December 2011 |
Creators | Bachmann, Christian |
Contributors | Abdulhai, Baher, Roorda, Matthew J. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds