This thesis deals with the idea of using accelerator driven systems for thorium transmutation into the fissile material, which can be utilized in the accelerator driven systems and in thermal nuclear reactors. Thorium occurs on Earth only in fertile isotope Th-232. It can be converted to fissile U-233 by neutron capture and subsequent beta decay. The experimental part handles the data measured by the irradiation of four thorium samples by the secondary neutrons in the QUINTA spallation target, which was irradiated with 660~MeV protons. Reaction rates for the fission and spallation products were estimated using gamma spectroscopy and activation techniques. Furthermore, Pa-233 production rates were also determined in all experimental samples. Pa-233 and fission production rates were calculated in all experimental samples using the MCNPX transport code and evaluated nuclear data for high-energy reactions. The experimental results are of a great importance for the future investigation of thorium in the accelerator driven system concept, validation of Monte-Carlo based calculation codes and validation of high-energy nuclear models.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:318864 |
Date | January 2017 |
Creators | Král, Dušan |
Contributors | ČR, Petr Chudoba, ÚJF AV, Zeman, Miroslav |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds