Transcriptional regulation of gene expression in eukaryotes has evolved over millions of years. The regulatory pathways of nuclear receptors represent an evolutionarily ancient, but conserved mechanism with associated accessory proteins, many of them forming a functional nexus known as the Mediator complex involved in transcription. Despite the versatility of the pathway, e.g. through the adoption of new regulatory functions in phylogenetically more recent Metazoa, we hypothesise that the intrinsic potential of the NR-Mediator axis to directly translate a stimulus to a biological response is conserved across species, and additional regulation could also be achieved through secondary functions of its essential members. To support the hypothesis, we assessed the ligand-binding capability of retinoic X receptor in Trichoplax adhaerens and provided evidence to support the concept that this capability was already present at the base of metazoan evolution. With regards to the potential secondary functions, we took inspiration from previous research and identified the Mediator subunit 28 (MED28) as the only known member having documented nuclear and cytoplasmic dual roles, and thus possessing the potential to transmit signals from the cellular structural states to the nucleus. Due to the lack of...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:409216 |
Date | January 2019 |
Creators | Chughtai, Ahmed Ali |
Contributors | Kostrouch, Zdeněk, Malínský, Jan, Brábek, Jan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds