Return to search

Characterization of nodulation defective mutants of Bradyrhizobium japonicum

The Rhizobium-legume symbiosis is an opportunistic association between two symbiotic partners that results in the formation of the root nodule. The process depends on the expression of a number of plant and bacterial genes that are considered critical for the establishment and maintainance of the symbiotic state. The merits of a mutational approach to the analysis of symbiosis have been recognized for several years and transposon Tn5 mutagenesis of Rhizobium has led to the identification of several symbiotic genes. This study describes the use of Tn5 mutagenesis for the isolation of symbiotically defective mutants of Bradyrhizobium japonicum. Two classes, auxotrophic and cell surface-altered mutants defective in nodule formation, have been characterized. In B. japonicum USDA 122, histidine auxotrophs that are defective in nodulation have been studied. The mutagenized DNA region has been cloned and the wild-type DNA region isolated by hybridization and complementation. In B. japonicum 61A76, Tn5-induced cell surface-altered mutants have been isolated by selecting for bacteriophage resistance. Several parameters have been used to demonstrate alterations in cell surface components. It has been shown that the Tn5 insertion is not the primary cause of the mutation in two of the characterized mutants. Complementation tests have led to the isolation of a wild-type DNA-containing cosmid, pPS23A, that overcomes the symbiotic defect in one of the mutants. Analysis of the cell surface showed a partial restoration of surface components in the complemented mutant.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.75665
Date January 1987
CreatorsSista, Prakash Rao
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Biology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 000660447, proquestno: AAINL45915, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds