Small satellites, especially Cube Satellites (CubeSats), have become important vehicles for space exploration. One of the challenges CubeSats face is limited surface area. This limitation poses a question for antenna design–where to mount the antenna? This thesis presents a study where the antennas are directly integrated on top of solar cells. In order to achieve such integration, the antennas have to be highly transparent to light. This thesis aims at the transparency of 95%. Methods to effectively generate transparent antenna by using inkjet printing are discussed in detail and interaction between solar cells and antennas have been assessed and presented. It is found that the presence of solar cells cast a degree of gain reduction of the antenna, but such a loss may be improved with a more precise integration and by increasing the operational frequency. The effect of the antenna on solar cell performance is concluded to be less than 3%, promising a feasibility of implementing highly transparent antennas on CubeSats.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2100 |
Date | 01 December 2011 |
Creators | Arellano, Jesus A. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0015 seconds