Neural networks were applied to the estimation problem consisting of identifying both nearfield and quasi-farfield flow structures of a jet undergoing spatial mode excitation. The evolution of disturbances introduced by a spatially excited jet spans a linear and nonlinear regime in the downstream flow field. For the linear portion, the neural network was trained to identify critical flow field parameters using numerical data generated from linear stability analysis code. It was shown that the neural network could function as a multiple-input adaptive linear combiner over the linear nearfield of the jet flowfield. Beyond the nearfield (2.0 ≤ z/D ≤ 6.0), a back propagation neural network was trained using experimental data captured during different modal excitation patterns. Constant velocity contours for mode 0, mode 1, mode ±1, and mode ±2 jet excitations were accurately estimated using a low-order neural network filter with conditioned inputs. Moderate success was also demonstrated when the network was used to extrapolate flow field parameters outside the initial training set. This demonstration of using neural networks to predict flowfield structure in non-reacting flows is expected to be directly applicable to estimation and control of reacting flows in combustors. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/44833 |
Date | 18 September 2008 |
Creators | Fuller, Russell M. |
Contributors | Mechanical Engineering, Saunders, William R., Vandsburger, Uri, VanLandingham, Hugh F. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis, Text |
Format | xi, 126 leaves, BTD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 35332692, LD5655.V855_1996.F855.pdf |
Page generated in 0.0024 seconds