Return to search

Four Terminal Junction Field-effect Transistor Model For Computer-aided Design

A compact model for four-terminal (independent top and bottom gates) junction field-effect transistor (JFET) is presented in this dissertation. The model describes the steady-state characteristics with a unified equation for all bias conditions that provides a high degree of accuracy and continuity of conductance, which are important for predictive analog circuit simulations. It also includes capacitance and leakage equations. A special capacitance drop-off phenomenon at the pinch-off region is studies and modeled. The operations of the junction fieldeffect transistor (JFET) with an oxide top-gate and full oxide isolation are analyzed, and a semi-physical compact model is developed. The effects of the different modes associated with the oxide top-gate on the JFET steady-state characteristics of the transistor are discussed, and a single expression applicable for the description of the JFET dc characteristics for all operation modes is derived. The model has been implemented in Verilog-A and simulated in Cadence framework for comparison to experimental data measured at Texas Instruments.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4145
Date01 January 2007
CreatorsDing, Hao
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0023 seconds