This thesis proposes a framework for combined source-channel coding under power and bandwidth constrained noisy channel. The framework is then applied to progressive image coding transmission using constant envelope M-ary Phase Shift Key (MPSK) signaling over an Additive White Gaussian Channel (AWGN) channel. First the framework for uncoded MPSK signaling is developed. Then, itÂ’s extended to include coded modulation using Trellis Coded Modulation (TCM) for MPSK signaling. Simulation results show that coded MPSK signaling performs 3.1 to 5.2 dB better than uncoded MPSK signaling depending on the constellation size. Finally, an adaptive TCM system is presented for practical implementation of the proposed scheme, which outperforms uncoded MPSK system over all signal to noise ratio (Es/No) ranges for various MPSK modulation formats.
In the second part of this thesis, the performance of the scheme is investigated from the channel capacity point of view. Using powerful channel codes like Turbo and Low Density Parity Check (LDPC) codes, the combined source-channel coding scheme is shown to be within 1 dB of the performance limit with MPSK channel signaling.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/1589 |
Date | 17 February 2005 |
Creators | Raja, Nouman Saeed |
Contributors | Xiong, Zixiang |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 884024 bytes, electronic, application/pdf, born digital |
Page generated in 0.0021 seconds