Return to search

Accelerator-driven systems : Safety and kinetics

<p>The accelerator-driven system (ADS) is recognized as a promising system for the purpose of nuclear waste transmutation and minimization of spent fuel radiotoxicity. The primary cause for this derives from its accelerator-driven, sub-critical operating state, which introduces beneficial safety-related features allowing for application of cores employing fuel systems containing pure transuranics or minor actinides, thereby offering increased incineration rate of waste products and minimal deployment of advanced (and expensive) partitioning and transmutation technologies. The main theme of the thesis is safety and kinetics performance of accelerator-driven nuclear reactors. The studies are confined to the examination of ADS design proposals employing fast neutron spectrum, uranium-free lattice fuels, and liquid-metal cooling, with emphasis on lead-bismuth coolant. The thesis consists of computational studies under normal operation and hypothetical accidents, and of evaluation and identification of safety design features.</p><p>By itself, subcritical operation provides a distinct safety advantage over critical reactor operation, distinguished by high operational stability and additional margins for positive reactivity insertion. For a uranium-free minor actinide based fuel important safety parameters deteriorate. Specific analyses suggest that operation of such cores in a critical state would be very difficult. The studies of unprotected transients indicate that lead-bismuth cooled accelerator-driven reactors can be effective in addressing the low effective delayed neutron fraction and the high coolant void reactivity that comes with the minor actinide fuel, but some supportive prompt negative feedback mechanism might be considered necessary to compensate for a weak Doppler effect in case of a prompt critical transient. Although lead-bismuth features a high boiling point, the work underlines the importance of maintaining a low coolant void reactivity value. The transient design studies identified a molybdenum-based Ceramic-Metal (CerMet) fuel with favourable inherent safety features. A higher lattice pitch is suggested to avoid mechanical failure during unprotected loss-of-flow. Detailed coupled neutron kinetics and thermal hydraulic analyses demonstrated that the point kinetics approximation is capable of providing highly accurate transient calculations of subcritical systems. The results suggest better precision at lower keff levels, which is an effect of the reduced sensitivity to system reactivity perturbations in a subcritical state resulting in small spatial distortions. In the course of a beam reliability study, the accelerator was identified as responsible for frequent beam interruptions. It is clear that extensive improvement in the mean-time between beam failures is required.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-146
Date January 2005
CreatorsEriksson, Marcus
PublisherKTH, Physics
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationTrita-FYS, 0280-316X ; 2005:13

Page generated in 0.0024 seconds