Made available in DSpace on 2017-07-10T17:11:50Z (GMT). No. of bitstreams: 1
JORGE AIKES JUNIOR.PDF: 2050278 bytes, checksum: f5bae18bbcb7465240488c45b2c813e7 (MD5)
Previous issue date: 2012-04-11 / Time series can be understood as any set of observations which are time ordered. Among the many possible tasks appliable to temporal data, one that has attracted increasing interest, due to its various applications, is the time series forecasting. The k-Nearest Neighbor - Time Series Prediction (kNN-TSP) algorithm is a non-parametric method for forecasting time series. One of its advantages, is its easiness application when compared to parametric methods. Even though its easier to define kNN-TSP s parameters, some issues remain opened. This research is focused on the study of one of these parameters: the similarity measure. This parameter was empirically evaluated using various similarity measures in a large set of time series, including artificial series with seasonal and chaotic characteristics, and several real world time series. It was also carried out a case study comparing the predictive accuracy of the kNN-TSP algorithm with the Moving Average (MA), univariate Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and multivariate SARIMA methods in a time series of a Korean s hospital daily patients flow in the Emergency Department. This work also proposes an approach to the development of a hybrid similarity measure which combines characteristics from several measures. The research s result demonstrated that the Lp Norm s measures have an advantage over other measures evaluated, due to its lower computational cost and for providing, in general, greater accuracy in temporal data forecasting using the kNN-TSP algorithm. Although the literature in general adopts the Euclidean similarity measure to calculate de similarity between time series, the Manhattan s distance can be considered an interesting candidate for defining similarity, due to the absence of statistical significant difference and to its lower computational cost when compared to the Euclidian measure. The measure proposed in this work does not show significant results, but it is promising for further research. Regarding the case study, the kNN-TSP algorithm with only the similarity measure parameter optimized achieves a considerably lower error than the MA s best configuration, and a slightly greater error than the univariate e multivariate SARIMA s optimal settings presenting less than one percent of difference. / Séries temporais podem ser entendidas como qualquer conjunto de observações que se encontram ordenadas no tempo. Dentre as várias tarefas possíveis com dados temporais, uma que tem atraído crescente interesse, devido a suas várias aplicações, é a previsão de séries temporais. O algoritmo k-Nearest Neighbor - Time Series Prediction (kNN-TSP) é um método não-paramétrico de previsão de séries temporais que apresenta como uma de suas vantagens a facilidade de aplicação, quando comparado aos métodos paramétricos. Apesar da maior facilidade na determinação de seus parâmetros, algumas questões relacionadas continuam em aberto. Este trabalho está focado no estudo de um desses parâmetros: a medida de similaridade. Esse parâmetro foi avaliado empiricamente utilizando diversas medidas de similaridade em um grande conjunto de séries temporais que incluem séries artificiais, com características sazonais e caóticas, e várias séries reais. Foi realizado também um estudo de caso comparativo entre a precisão da previsão do algoritmo kNN-TSP e a dos métodos de Médias Móveis (MA), Auto-regressivos de Médias Móveis Integrados Sazonais (SARIMA) univariado e SARIMA multivariado, em uma série de fluxo diário de pacientes na Área de Emergência de um hospital coreano. Neste trabalho é ainda proposta uma abordagem para o desenvolvimento de uma medida de similaridade híbrida, que combine características de várias medidas. Os resultados obtidos neste trabalho demonstram que as medidas da Norma Lp apresentam vantagem sobre as demais medidas avaliadas, devido ao seu menor custo computacional e por apresentar, em geral, maior precisão na previsão de dados temporais utilizando o algoritmo kNN-TSP. Apesar de na literatura, em geral, a medida Euclidiana ser adotada como medida de similaridade, a medida Manhattan pode ser considerada candidata interessante para definir a similaridade entre séries temporais, devido a não apresentar diferença estatisticamente significativa com a medida Euclidiana e possuir menor custo computacional. A medida proposta neste trabalho, não apresenta resultados significantes, mas apresenta-se promissora para novas pesquisas. Com relação ao estudo de caso, o algoritmo kNN-TSP, com apenas o parâmetro de medida de similaridade otimizado, alcança um erro consideravelmente inferior a melhor configuração com MA, e pouco maior que as melhores configurações dos métodos SARIMA univariado e SARIMA multivariado, sendo essa diferença inferior a um por cento.
Identifer | oai:union.ndltd.org:IBICT/oai:tede.unioeste.br:tede/1084 |
Date | 11 April 2012 |
Creators | Aikes Junior, Jorge |
Contributors | Lee, Huei Diana, Lotero, Roberto Cayetano, Batista, Gustavo Enrique Almeida Prado Alves |
Publisher | Universidade Estadual do Oeste do Parana, Foz do Iguaçu, 8774263440366006536, 500, Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos, UNIOESTE, BR, Centro de Engenharias e Ciências Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE, instname:Universidade Estadual do Oeste do Paraná, instacron:UNIOESTE |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds