There is a lack of precise and universally accepted approach in the quantification of carbon sequestered in aboveground woody biomass using remotely sensed data. Drafting of the Kyoto Protocol has made the subject of carbon sequestration more important, making the development of accurate and cost-effective remote sensing models a necessity. There has been much work done in estimating aboveground woody biomass from spectral data using the traditional multiple linear regression analysis approach and the Finnish k-nearest neighbor approach, but the accuracy of these methods to estimate biomass has not been compared. The purpose of this study is to compare the ability of these two methods in estimating above ground biomass (AGB) using spectral data derived from Landsat ETM+ imagery.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2120 |
Date | 13 May 2006 |
Creators | Prabhu, Chitra L |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0015 seconds