Return to search

Big data management for periodic wireless sensor networks / Gestion de données volumineuses dans les réseaux de capteurs périodiques

Les recherches présentées dans ce mémoire s’inscrivent dans le cadre des réseaux decapteurs périodiques. Elles portent sur l’étude et la mise en oeuvre d’algorithmes et de protocolesdistribués dédiés à la gestion de données volumineuses, en particulier : la collecte, l’agrégation etla fouille de données. L’approche de la collecte de données permet à chaque noeud d’adapter sontaux d’échantillonnage à l’évolution dynamique de l’environnement. Par ce modèle le suréchantillonnageest réduit et par conséquent la quantité d’énergie consommée. Elle est basée surl’étude de la dépendance de la variance de mesures captées pendant une même période voirpendant plusieurs périodes différentes. Ensuite, pour sauvegarder plus de l’énergie, un modèled’adpatation de vitesse de collecte de données est étudié. Ce modèle est basé sur les courbes debézier en tenant compte des exigences des applications. Dans un second lieu, nous étudions unetechnique pour la réduction de la taille de données massive qui est l’agrégation de données. Lebut est d’identifier tous les noeuds voisins qui génèrent des séries de données similaires. Cetteméthode est basée sur les fonctions de similarité entre les ensembles de mesures et un modèle defiltrage par fréquence. La troisième partie est consacrée à la fouille de données. Nous proposonsune adaptation de l’approche k-means clustering pour classifier les données en clusters similaires,d’une manière à l’appliquer juste sur les préfixes des séries de mesures au lieu de l’appliquer auxséries complètes. Enfin, toutes les approches proposées ont fait l’objet d’études de performancesapprofondies au travers de simulation (OMNeT++) et comparées aux approches existantes dans lalittérature. / This thesis proposes novel big data management techniques for periodic sensor networksembracing the limitations imposed by wsn and the nature of sensor data. First, we proposed anadaptive sampling approach for periodic data collection allowing each sensor node to adapt itssampling rates to the physical changing dynamics. It is based on the dependence of conditionalvariance of measurements over time. Then, we propose a multiple level activity model that usesbehavioral functions modeled by modified Bezier curves to define application classes and allowfor sampling adaptive rate. Moving forward, we shift gears to address the periodic dataaggregation on the level of sensor node data. For this purpose, we introduced two tree-based bilevelperiodic data aggregation techniques for periodic sensor networks. The first one look on aperiodic basis at each data measured at the first tier then, clean it periodically while conservingthe number of occurrences of each measure captured. Secondly, data aggregation is performedbetween groups of nodes on the level of the aggregator while preserving the quality of theinformation. We proposed a new data aggregation approach aiming to identify near duplicatenodes that generate similar sets of collected data in periodic applications. We suggested the prefixfiltering approach to optimize the computation of similarity values and we defined a new filteringtechnique based on the quality of information to overcome the data latency challenge. Last butnot least, we propose a new data mining method depending on the existing K-means clusteringalgorithm to mine the aggregated data and overcome the high computational cost. We developeda new multilevel optimized version of « k-means » based on prefix filtering technique. At the end,all the proposed approaches for data management in periodic sensor networks are validatedthrough simulation results based on real data generated by periodic wireless sensor network.

Identiferoai:union.ndltd.org:theses.fr/2014BESA2029
Date30 June 2014
CreatorsMedlej, Maguy
ContributorsBesançon, Bahi, Jacques
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds