本研究透過文字探勘對美國企業2004年至2014年的MD&A資訊進行分析,並搭配財務資訊相互比較,分析美國企業所揭露的MD&A語調一致性,接著透過實證研究分析造成美國企業MD&A語調一致性結果的原因。MD&A非量化資訊運用Loughran and McDonald正負向詞典、TFIDF、K-Means等技術進行分析,並結合財務資訊分析,分析美國企業2004年至2014年的MD&A資訊;再利用企業績效變異度、企業規模與企業成立年數等變數,來分析影響公司MD&A揭露誇大與否的因素。
研究結果顯示,企業規模、企業風險程度、分析師追蹤人數與企業成立年
數皆會深深影響MD&A語調的一致性。除了主要實證分析結果外,另外搭配三組穩健性測試來測試模型的敏感性。本研究希望讓資訊使用者運用企業所揭露的MD&A資訊時,能做更多適當的調整,考慮公司MD&A的揭露是否有過度樂觀誇大或是過度悲觀的情勢,並且可以藉此做出正確的經濟決策。 / This study presented a way to analyze the MD&A information of US listed companies from 2004 to 2014 via text mining techniques such as Loughran and McDonald Word Count and TFIDF. Then I cross compare a company’s MD&A information with its financial information using K-Means and establish an index to capture the consistency between the two types of information. Finally, I develop empirical model with explanatory variables such as volatility of earnings, company scale, company’s age, etc. for the consistency index.
According to the empirical results, company scale, company operating risks, analyst coverage, and company’s age are significantly related to the MD&A consistency. Three robustness checks demonstrate the similar results. The results suggest investors an additional way of using MD&A other than merely reading it. Investors should consider whether the MD&A is overstated or understated while using it in their investment decisions.
Identifer | oai:union.ndltd.org:CHENGCHI/G0101353053 |
Creators | 李宸昕, Lee, Chen Hsin |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0022 seconds