Return to search

Comparison of the Utility of Regression Analysis and K-Nearest Neighbor Technique to Estimate Above-Ground Biomass in Pine Forests Using Landsat ETM+ imagery

There is a lack of precise and universally accepted approach in the quantification of carbon sequestered in aboveground woody biomass using remotely sensed data. Drafting of the Kyoto Protocol has made the subject of carbon sequestration more important, making the development of accurate and cost-effective remote sensing models a necessity. There has been much work done in estimating aboveground woody biomass from spectral data using the traditional multiple linear regression analysis approach and the Finnish k-nearest neighbor approach, but the accuracy of these methods to estimate biomass has not been compared. The purpose of this study is to compare the ability of these two methods in estimating above ground biomass (AGB) using spectral data derived from Landsat ETM+ imagery.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2120
Date13 May 2006
CreatorsPrabhu, Chitra L
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.002 seconds