Mnoho rozdílných strategií fúze bylo vyvinuto během posledních 15 let výzkumu simultánního EEG-fMRI. Aktuální dizertační práce shrnuje aktuální současný stav v oblasti výzkumu fúze simultánních EEG-fMRI dat a pokládá si za cíl vylepšit vizualizaci úkolem evokovaných mozkových sítí slepou analýzou přímo z nasnímaných dat. Dva rozdílné modely, které by to měly vylepšit, byly navrhnuty v předložené práci (tj. zobecněný spektrální heuristický model a zobecněný prostorovo-frekvenční heuristický model). Zobecněný frekvenční heuristický model využívá fluktuace relativního EEG výkonu v určitých frekvenčních pásmech zprůměrovaných přes elektrody zájmu a srovnává je se zpožděnými fluktuacemi BOLD signálů pomocí obecného lineárního modelu. Získané výsledky ukazují, že model zobrazuje několik na frekvenci závislých rozdílných úkolem evokovaných EEG-fMRI sítí. Model překonává přístup fluktuací absolutního EEG výkonu i klasický (povodní) heuristický přístup. Absolutní výkon vizualizoval s úkolem nesouvisející širokospektrální EEG-fMRI komponentu a klasický heuristický přístup nebyl senzitivní k vizualizaci s úkolem spřažené vizuální sítě, která byla pozorována pro relativní pásmo pro data vizuálního oddball experimentu. Pro EEG-fMRI data s úkolem sémantického rozhodování, frekvenční závislost nebyla ve finálních výsledcích tak evidentní, neboť všechna pásma zobrazily vizuální síť a nezobrazily aktivace v řečových centrech. Tyto výsledky byly pravděpodobně poškozeny artefaktem mrkání v EEG datech. Koeficienty vzájemné informace mezi rozdílnými EEG-fMRI statistickými parametrickými mapami ukázaly, že podobnosti napříč různými frekvenčními pásmy jsou obdobné napříč různými úkoly (tj. vizuální oddball a sémantické rozhodování). Navíc, koeficienty prokázaly, že průměrování napříč různými elektrodami zájmu nepřináší žádnou novou informaci do společné analýzy, tj. signál na jednom svodu je velmi rozmazaný signál z celého skalpu. Z těchto důvodů začalo být třeba lépe zakomponovat informace ze svodů do EEG-fMRI analýzy, a proto jsme navrhli více obecný prostorovo-frekvenční heuristický model a také jak ho odhadnout za pomoci prostorovo-frekvenční skupinové analýzy nezávislých komponent relativního výkonu EEG spektra. Získané výsledky ukazují, že prostorovo-frekvenční heuristický model vizualizuje statisticky nejvíce signifikantní s úkolem spřažené mozkové sítě (srovnáno s výsledky prostorovo-frekvenčních vzorů absolutního výkonu a s výsledky zobecněného frekvenčního heuristického modelu). Prostorovo-frekvenční heuristický model byl jediný, který zaznamenal s úkolem spřažené aktivace v řečových centrech na datech sémantického rozhodování. Mimo fúzi prostorovo-frekvenčních vzorů s fMRI daty, jsme testovali stabilitu odhadů prostorovo-frekvenčních vzorů napříč různými paradigmaty (tj. vizuální oddball, semantické rozhodování a resting-state) za pomoci k-means shlukovacího algoritmu. Dostali jsme 14 stabilních vzorů pro absolutní EEG výkon a 12 stabilních vzorů pro relativní EEG výkon. Ačkoliv 10 z těchto vzorů vypadají podobně napříč výkonovými typy, prostorovo-frekvenční vzory relativního výkonu (tj. vzory prostorovo-frekvenčního heuristického modelu) mají vyšší evidenci k úkolům.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:371799 |
Date | January 2018 |
Creators | Labounek, René |
Contributors | Havlíček, Martin, Hlinka, Jaroslav, Jan, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds