Return to search

Clusters Identification: Asymmetrical Case

Cluster analysis is one of the typical tasks in Data Mining, and it groups data objects based only on information found in the data that describes the objects and their relationships. The purpose of this thesis is to verify a modified K-means algorithm in asymmetrical cases, which can be regarded as an extension to the research of Vladislav Valkovsky and Mikael Karlsson in Department of Informatics and Media. In this thesis an experiment is designed and implemented to identify clusters with the modified algorithm in asymmetrical cases. In the experiment the developed Java application is based on knowledge established from previous research. The development procedures are also described and input parameters are mentioned along with the analysis. This experiment consists of several test suites, each of which simulates the situation existing in real world, and test results are displayed graphically. The findings mainly emphasize the limitations of the algorithm, and future work for digging more essences of the algorithm is also suggested.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-208328
Date January 2013
CreatorsMao, Qian
PublisherUppsala universitet, Informationssystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0014 seconds