Ray-finned fishes (Actinopterygii) exhibit the greatest biodiversity among vertebrates. The vast majority of extant actinopterygian fish species belong to clade Teleostei - a lineage whose significant evolutionary success might have resulted from a teleost specific whole- genome duplication (TSGD) that occurred at the onset of this group, subsequent to its divergence from the rest of actinopterygian lineages. Despite the growing body of sequenced fish genomes and analyses of their transcriptomes, the largest contribution to understanding fish genomes comes from analyses of DNA content and from cytogenetics. Genomes of ray-finned fishes and especially those of Teleostei exhibit vast diversity and rapid dynamics of repetitive DNA sequences whose variability is reflected in a wide range of fish genome sizes and in the dynamics behind karyotype differentiation. Therefore, ray-finned fishes offer a unique opportunity to study genome variability as a driving force underlying morphological and ecological diversification, evolution and adaptation. Particularly, the mapping of repetitive DNA sequences by means of fluorescence in situ hybridization (FISH) has proven to be a very useful and informative approach during the last two decades and contributed greatly to our understanding of the fish genome...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:348963 |
Date | January 2016 |
Creators | Sember, Alexandr |
Contributors | Ráb, Petr, Marec, František, Král, Jiří |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds