<p>Katalytisk förbränning är en lovande teknik för användning vid kraftgenerering, särskilt för</p><p>gasturbiner. Genom att använda katalytisk förbränning kan man nå mycket låga emissioner av kväveoxider</p><p>(NOX), kolmonoxid (CO) och oförbrända kolväten (UHC) samtidigt, vilket är svårt vid</p><p>konventionell förbränning. Förutom att man erhåller låga emissioner, kan katalytisk förbränning stabilisera</p><p>förbränningen och kan därmed användas för att uppnå stabil förbränning för gaser med låga</p><p>värmevärden. Denna avhandling behandlar huvudsakligen högtemperaturdelen av den katalytiska</p><p>förbränningskammaren. Kraven på denna del har visat sig svåra att nå. För att den katalytiska förbränningskammaren</p><p>ska kunna göras till ett alternativ till den konventionella, måste katalysatorer</p><p>med bättre stabilitet och aktivitet utvecklas.</p><p>Målet med denna avhandling har varit att utveckla katalysatorer med högre aktivitet och stabilitet,</p><p>lämpliga för högtemperaturdelen av en katalytisk förbränningskammare för förbränning av naturgas.</p><p>En mikroemulsionsbaserad framställningsmetod utvecklades för att undersöka om den kunde ge</p><p>katalysatorer med bättre stabilitet och aktivitet. Bärarmaterial som är kända för sin stabilitet, magnesia</p><p>och hexaaluminat, framställdes med den nya metoden. Mikroemulsionsmetoden användes också</p><p>för att impregnera de framställda materialen med de mer aktiva materialen perovskit (LaMnO3) och</p><p>ceriumdioxid (CeO2). Det visade sig att mikroemulsionsmetoden kan användas för att framställa katalysatorer</p><p>med bättre aktivitet jämfört med de konventionella framställningsmetoderna. Genom att</p><p>använda mikroemulsionen för att lägga på aktiva material på bäraren erhölls också en högre aktivitet</p><p>jämfört med konventionella beläggningsstekniker.</p><p>Eftersom katalysatorerna ska användas under lång tid i förbräningskammaren utfördes också en</p><p>åldringsstudie. Som jämförelse användes en av de mest stabila materialen som rapporterats i litteraturen:</p><p>LMHA (mangan-substituerad lantan-hexaaluminat). Resultaten visade att LMHA deaktiverade</p><p>mycket mer jämfört med flera av katalysatorerna innehållande ceriumdioxid på hexaaluminat som</p><p>framställts med den utvecklade mikroemulsionstekniken.</p> / <p>Catalytic combustion is a promising technology for power applications, especially gas turbines.</p><p>By using catalytic combustion ultra low emissions of nitrogen oxides (NO<sub>X</sub>), carbon monoxide (CO)</p><p>and unburned hydrocarbons (UHC) can be reached simultaneously, which is very difficult with conventional</p><p>combustion technologies. Besides achieving low emission levels, catalytic combustion can</p><p>stabilize the combustion and thereby be used to obtain stable combustion with low heating-value</p><p>gases. This thesis is focused on the high temperature part of the catalytic combustor. The level of</p><p>performance demanded on this part has been proven hard to achieve. In order to make the catalytic</p><p>combustor an alternative to the conventional flame combustor, more stable catalysts with higher activity</p><p>have to be developed.</p><p>The objective of this work was to develop catalysts with higher activity and stability, suitable</p><p>for the high-temperature part of a catalytic combustor fueled by natural gas. A microemulsion-based</p><p>preparation method was developed for this purpose in an attempt to increase the stability and activity</p><p>of the catalysts. Supports known for their stability, magnesia and hexaaluminate, were prepared using</p><p>the new method. The microemulsion method was also used to impregnate the prepared material with</p><p>the more active materials perovskite (LaMnO<sub>3</sub>) and ceria (CeO<sub>2</sub>). It was shown that the microemulsion</p><p>method could be used to prepare catalysts with better activity compared to the conventional</p><p>methods. Furthermore, by using the microemulsion to apply active materials onto the support a</p><p>significantly higher activity was obtained than when using conventional impregnation techniques.</p><p>Since the catalysts will operate in the catalytic combustor for extended periods of time under</p><p>harsh conditions, an aging study was performed. One of the most stable catalysts reported in the</p><p>literature, LMHA (manganese-substituted lanthanum hexaaluminate), was included in the study for</p><p>comparison purposes. The results show that LMHA deactivated much more strongly compared to</p><p>several of the catalysts consisting of ceria supported on lanthanum hexaaluminate prepared by the</p><p>developed microemulsion method.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-4360 |
Date | January 2007 |
Creators | Elm Svensson, Erik |
Publisher | KTH, Chemical Engineering and Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Licentiate thesis, comprehensive summary, text |
Relation | Trita-CHE-Report, 1654-1081 ; 2007-24 |
Page generated in 0.0023 seconds