Ethanoltoleranz beruht vermutlich auf Veränderung in synaptischer Plastizität; da die Mechanismen, die zu dieser Anpassung der Synapsen führen, in hang-Mutanten offensichtlich defekt sind, war es Ziel dieser Arbeit zu erklären, wie HANG zu synaptischer Plastizität beiträgt. In diesem Zusammenhang war es besonders wichtig herauszufinden, in welchem neuronalen Prozeß HANG eine Rolle spielt. Antikörperfarbungen gegen HANG zeigten, da das Protein in allen neuronalen Zellkernen larvaler und adulter Gehirne vorhanden ist. Gehirne der hangAE10 Mutante zeigen keine Färbung, was bestätigt, da diese Tiere Nullmutanten für HANG sind. Eine genauere Analyse der Verteilung von HANG im Zellkern ergab, daß HANG in einem punktartigen Muster an bestimmten Stellen im Kern angereichert ist; diese HANG-Aggregate sind an der Innenseite der Kernmembran lokalisiert und colokalisieren nicht mit dem Chromatin. Auf der Basis dieser Ergebnissen wurde postuliert, daß HANG vermutlich an der Stabilisierung, Prozessierung oder dem Export von mRNAs beteiligt ist. Da synaptische Plastizität gut an den einzelnen Neuronen der neuromuskulären Synapse von Drosophila-Larven studiert werden kann, wurde die Morphologie der Motorneurone dritter Larven am Muskelpaar 6/7 des Segments A4 untersucht. Diese Untersuchungen zeigten, da Boutonanzahl und Axonlänge in hangAE10-Larven um 40 % erhöht sind. Außerdem zeigen einige Boutons der hang-Mutanten eine abnormale, sanduhrförmige Form, was darauf hinweist, daß sie nach Initiation der Bouton-Teilung möglicherweise in einem halb-separierten Zustand geblieben sind. Die Zunahme an Boutons in den Mutanten ist im wesentlichen auf eine Zunahme der Anzahl der Typ Ib-Boutons zurückzuführen. Die Analyse der Verteilung verschiedener synaptischer Marker in hangover-Mutanten ergab keine Hinweise auf Abnormalitäten im Zytoskelett oder in der Ausbildung der prä-und postsynaptischen Strukturen. Des weiteren ist die Anzahl der aktiven Zonen relativ zur Boutonoberfläche nicht verändert; da hang-Mutanten aber mehr synaptische Boutons pro synaptischem Terminal besitzen, kann man insgesamt von einer Zunahme der Anzahl der aktiven Zonen ausgehen. Die präsynaptische Expression von HANG in den Mutanten rettet die erhöhte Boutonanzahl und die verlängerten Axone, was ebenfalls beweist, daß die beobachteten synaptischen Defekte auf das Fehlen von HANG und nicht auf Sekundärmutationen zurückzuführen sind. Eine postsynaptische Expression der hangover cDNA in den Mutanten dagegen rettet den Phänotyp nicht. Die Anzahl der synaptischen Boutons wird unter anderem durch cAMP-Levels bestimmt, welche somit synaptische Plastizität regeln. Da hang-Mutanten eine erhöhte Boutonanzahl aufweisen, führte dies zu der Spekulation, daß der Phänotyp dieser Mutanten möglicherweise auf veränderte cAMPlevels zurückzuführen ist. Um dies zu überprüfen, wurde die Morphologie der neuromuskulären Synapsen von hangAE10-Larven mit denen von dnc1 verglichen, welche Defekte in der cAMP-Kaskade aufweisen. Einige Aspekte des Phänotyps (z. B. die Zunahme der Boutonanzahl und das Verhaltnis von aktiven Zonen pro Boutonfläche) sind sehr ¨ahnlich; jedoch unterscheiden sich die beiden Mutanten in anderen morphologischen Aspekten. Die Expression eines UAS-dnc-Transgens in hangover-Mutanten modifizierte den hang-Phänotyp ebenfalls nicht. Auf der Basis der Ergebnisse dieser Arbeit wurde ein Modell für die Funktion von HANG erstellt, nach dem dieses Protein vermutlich am Isoform-spezifischen Spleißen bestimmter Transkripte beteiligt ist, deren Produkte für die synaptische Plastizität an der neuromuskulären Synapse benötigt werden. / The development of ethanol tolerance is due to changes in synaptic plasticity. Since the mechanisms mediating synaptic plasticity are probably defective in the mutant hangAE10, it was a goal of the present study to find out how HANG contributes to synaptic plasticity. In particular, it was important to clarify in which neuronal process HANG plays a role. Antibody stainings against HANG revealed that the protein is localized in all neuronal nuclei of larval and adult brains; the staining is absent in hangAE10, thus confirming that this P-element insertion stock is a protein null for HANG. Detailed analysis of the subnuclear distribution of HANG showed that HANG immunoreactivity is enriched at distinct spots in the nucleus in a speckled pattern; these speckles are found at the inside of the nuclear membrane and do not colocalize with chromatin nor with the nucleolus; thus, HANG is probably involved in the stabilization, processing or export of RNAs. As synaptic plasticity can be studied in single neurons at the larval neuromuscular junction, the morphology of the synaptic terminals of hangAE10 mutants was analyzed at muscle 6/7, segment A4. These studies revealed that hangAE10 mutants display a 40 % increase in bouton number and axonal branch length; in addition, some boutons have an abnormal hourglass-like shape, suggesting that they are arrested in a semi-separated state following the initiation of bouton division. The increase in bouton number of hang mutants is mainly due to an increase in numbers of type Ib boutons. The analysis of the distribution of several synaptic markers in hang mutants did not show abnormalities. The presynaptic expression of HANG in hang mutants rescues the increase in bouton number and axonal branch length, thus proving that the phenotypes seen in the P-element insertion hangAE10 are attributable to the lack of HANG rather than to effects of the P-element marker rosy or to a secondary hit on the same chromsome during mutagensis. This finding is further supported by the fact that postsynaptic expression of HANG does not rescue the abnormal NMJ morphology of hangAE10. Alterations in cAMP levels regulate the number of boutons; since hang mutants display an increase in bouton number, the questions was whether this morphological abnormality was due to defects in cAMP signalling. To test this hypothesis, hangAE10 NMJs were compared to those of the hypomorphic allele dnc1 that has a defective cAMP cascade. Some aspects of the NMJ phenotype (e.g. the increase in bouton number and the unaltered ratio of active zones per bouton area) are similar in hangAE10 and dnc1, other differ. Expression of a UAS-dnc transgene in hangAE10 mutants does not modify the phenotype. In summary, the results of this study indicate that nuclear protein HANG might be involved in isoform-specific splicing of genes required for synaptic plasticity at the NMJ.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:1275 |
Date | January 2005 |
Creators | Schwenkert, Isabell |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0125 seconds