Return to search

Semidefinite Embedding for the Dimensionality Reduction of DNA Microarray Data

Harnessing the power of DNA microarray technology requires the existence of analysis methods that accurately interpret microarray data. Current literature abounds with algorithms meant for the investigation of microarray data. However, there is need for an efficient approach that combines different techniques of microarray data analysis and provides a viable solution to dimensionality reduction of microarray data. Reducing the high dimensionality of microarray data is one approach in striving to better understand the information contained within the data. We propose a novel approach for dimensionality reduction of microarray data that effectively combines different techniques in the study of DNA microarrays. Our method, <strong><em>KAS</em></strong> (<em>kernel alignment with semidefinite embedding</em>), aids the visualization of microarray data in two dimensions and shows improvement over existing dimensionality reduction methods such as PCA, LLE and Isomap.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/2945
Date January 2006
CreatorsKharal, Rosina
PublisherUniversity of Waterloo
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatapplication/pdf, 2388818 bytes, application/pdf
RightsCopyright: 2006, Kharal, Rosina . All rights reserved.

Page generated in 0.0014 seconds