Although carbon dioxide as a greenhouse gas is a serious environmental concern, it remains a valuable C1 source if viable methods are available for its conversion into useful products. Herein, we present recent progress in the synthesis of aliphatic, aromatic, cyclic, and bicyclic beta-ketocarboxylic acids and the promising results from subsequent asymmetric hydrogenation to give beta-hydroxycarboxylic acids.
For the synthesis of the beta-ketocarboxylic acids, we investigated the effects of temperature, reaction time, and amount of 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU), which is a promoter for carbon-carbon bond formation with CO2. The highest-yielding conditions for this DBU-promoted carboxylation reaction were used to carboxylate a number of aliphatic and aromatic substrates.
In order to determine whether the hydrogenation reaction will effectively compete with the in situ decarboxylation of the beta-ketocarboxylic acids, 1H NMR spectroscopy was used to monitor the rate of decarboxylation. The solvent, electronic, and steric effect on the rate of decarboxylation was investigated by testing a variety of beta-ketocarboxylic acids.
Using RuCl2{(S)-BINAP} catalyst precursor, we determined the effect that solvent, H2 pressure, base, and substrate substitution had on the enantioselectivity of the asymmetric hydrogenation. CH2Cl2 and MeOH were determined to be the best solvents because of the high hydrogenation selectivity, high enantioselectivity, and decreased reaction times. These standard conditions were used to hydrogenate the variety of aliphatic and aromatic beta-ketocarboxylic acids previously synthesized.
Additional experiments, including deuterium labelling, were performed in an attempt to elucidate the hydrogenation mechanism and the actively hydrogenated tautomer. These results lead us to believe that different reaction pathways occur in protic versus aprotic solvents.
The results discussed herein represent the first in depth investigation of transition metal catalyzed hydrogenation of beta-ketocarboxylic acids. These results are very encouraging because enantioselectivities greater than 99 % were achieved for multiple beta-keto acids. This synthesis is industrially advantageous due to the limited number of reactants required, their low-cost, and the potential for recycling unused materials. / Thesis (Master, Chemistry) -- Queen's University, 2008-08-26 10:17:34.703
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/1368 |
Date | 27 August 2008 |
Creators | Flowers, Brendan John Scott |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | 2096299 bytes, application/pdf |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0019 seconds