Konversationerna i ett kundforum rör sig över olika ämnen och språket är inkonsekvent. Texterna uppfyller inte de krav som brukar ställas på material inför automatisk nyckelordsextraktion. Uppsatsens undersöker hur nyckelord automatiskt kan extraheras ur ett kundforum trots dessa svårigheter. Fokus i undersökningen ligger på tre aspekter av nyckelordsextraktion. Den första faktorn rör hur den etablerade nyckelordsextraktionsmetoden TF*IDF presterar jämfört med fyra metoder som skapas med hänsyn till materialets ovanliga struktur. Nästa faktor som testas är om olika sätt att räkna ordfrekvens påverkar resultatet. Den tredje faktorn är hur metoderna presterar om de endast använder inläggen, rubrikerna eller båda texttyperna i sina extraktioner. Icke-parametriska test användes för utvärdering av extraktionerna. Ett antal Friedmans test visar att metoderna i några fall skiljer sig åt gällande förmåga att identifiera relevanta nyckelord. I post-hoc-test mellan de högst presterande metoderna ses en av de nya metoderna i ett fall prestera signifikant bättre än de andra nya metoderna men inte bättre än TF*IDF. Ingen skillnad hittades mellan användning av olika texttyper eller sätt att räkna ordfrekvens. För framtida forskning rekommenderas reliabilitetstest av manuellt annoterade nyckelord. Ett större stickprov bör användas än det i aktuell studie och olika förslag ges för att förbättra rättning av extraherade nyckelord. / Conversations in a customer forum span across different topics and the language is inconsistent. The text type do not meet the demands for automatic keyword extraction. This essay examines how keywords can be automatically extracted despite these difficulties. Focus in the study are three areas of keyword extraction. The first factor regards how the established keyword extraction method TF*IDF performs compared to four methods created with the unusual material in mind. The next factor deals with different ways to calculate word frequency. The third factor regards if the methods use only posts, only titles, or both in their extractions. Non-parametric tests were conducted to evaluate the extractions. A number of Friedman's tests shows the methods in some cases differ in their ability to identify relevant keywords. In post-hoc tests performed between the highest performing methods, one of the new methods perform significantly better than the other new methods but not better than TF*IDF. No difference was found between the use of different text types or ways to calculate word frequency. For future research reliability test of manually annotated keywords is recommended. A larger sample size should be used than in the current study and further suggestions are given to improve the results of keyword extractions.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-160686 |
Date | January 2018 |
Creators | Ekman, Sara |
Publisher | Stockholms universitet, Avdelningen för datorlingvistik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds