Les Vibrations Induites par Frottement (FIV) sont un phénomène complexe qui surgit chaque fois deux surfaces subissent un glissement relatif. Pendant les dernières décennies, une quantité significative de œuvres expérimentales et numériques a traité des Vibrations Induites par Frottement, tandis que la simulation de l'excitation dynamique de contacts frictionnels a été toujours un vrai défi dans beaucoup de domaines de recherche industrielles. Dans ce cadre de recherche, ce travail est adressé à l'analyse des Vibrations Induites par Frottement, en développant des analyses en même temps expérimentales et numériques ; on propose une nouvelle approche numérique pour reproduire l'excitation dynamique locale du contact et son effet sur la réponse vibrationnel du système, sans augmentation significative des coûts de calcul. Le système mécanique, l'objet de l'analyse, est composé par deux poutres en acier en contact frictionnel dans un mouvement relatif ; la dynamique simple du système tient compte de la distinction entre la réponse de dynamique du système et l'excitation à haut débit venant du contact. Une campagne expérimentale paramétrique a été conduite pour analyser les effets de trois paramètres de contact principaux (la vitesse de glissement, la charge normale et la rugosité superficielle) sur la réponse du système vibrationnel, c'est-à-dire sur les vibrations induites. En parallèle, un modèle numérique a été mis en œuvre pour reproduire l'excitation dynamique locale du contact et son effet sur la réponse vibrationnel du système. Une nouvelle loi de friction a été présentée dans le modèle, proposant l'utilisation d'un terme provoquant une perturbation dans le coefficient de frottement pour simuler les effets de l'excitation au contact. Les inclusions de l'excitation dynamique locale, en raison des phénomènes de contact, par le terme de perturbation du coefficient de frottement, permettent de reproduire correctement les Vibrations Induites par Frottement sans présenter une représentation de la topographie superficielle réelle, qui a besoin d'un grand nombre d'éléments, économisant donc le temps de calcul. Des signaux différents pour le terme provoquant la perturbation ont été testés pour simuler correctement les vibrations mesurées. L'évolution du terme provoquant la perturbation récupérée par une méthode inverse a surligné les contributions spectrales différentes de l'excitation locale du contact. La comparaison entre les Vibrations Induites par Frottement mesurées et ceux simulés numériquement a montré une bonne corrélation, validant la loi de frottement proposée. Finalement, l'effet d'un changement de rugosité e de vitesse de glissement a été aussi simulé numériquement et corrélé avec les résultats expérimentaux. / Friction-Induced Vibrations (FIV) are a complex phenomenon which arises each time two surfaces undergo relative sliding. During the last decades, a significant amount of experimental and numerical works dealt with Friction-Induced Vibrations, while the simulation of the dynamic excitation from frictional contacts has always been a real challenge to face in many industrial research areas. In this research framework, this work is addressed to the investigation of the Friction-Induced Vibrations, carrying on at the same time experimental and numerical analyses; a new numerical approach is proposed to reproduce the local dynamic excitation from the contact and its effect on the vibrational response of the system, without significant increase of the computational time costs. The mechanical system, object of the investigation, is composed by two steel beams in frictional contact during relative motion; the simple dynamics of the system allows for distinguishing between the dynamics response of the system and the broadband excitation coming from the contact. A parametrical experimental campaign has been conducted to analyse the effects of three main contact parameters (the relative sliding velocity, the normal load and the surface roughness) on the system vibrational response, i.e. on the induced vibrations. In parallel, a numerical model has been implemented to reproduce the local dynamic excitation from the contact and its effect on the vibrational response of the system. A new friction law has been introduced in the model, proposing the use of a perturbative term in the friction coefficient in order to simulate the effects of the contact excitation. The inclusions of the local dynamic excitation, due to the contact phenomena, by the perturbation term of the friction coefficient allows to correctly reproduce the Friction-Induced Vibrations without introducing a representation of the real surface topography, which usually needs a large number of elements, saving then computational time. Different signals for the perturbative term have been tested to simulate correctly the measured vibrations. The evolution of the perturbative term recovered by an inverse method allowed for highlighting the different spectral contributions of the local excitation coming from the contact. The comparison between the measured Friction-Induced Vibrations and the ones simulated numerically showed good correlation, validating the proposed friction law. Finally, the effect in a change of the sliding velocity and surface roughness have been simulated numerically too and correlated with experimental results.
Identifer | oai:union.ndltd.org:theses.fr/2017LYSEI118 |
Date | 18 December 2017 |
Creators | Giovanna, Lacerra |
Contributors | Lyon, Università degli studi La Sapienza (Rome), Giovanna, Lacerra |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds