Les procédés membranaires hybrides (PMH) allient la filtration membranaire basse pression à l’usage du charbon actif en poudre (CAP). Afin de diminuer les coûts opérationnels du procédé, il a été proposé de laisser vieillir le CAP dans le PMH et donc de minimiser le dosage de CAP frais. Peu d’information est disponible quant à la capacité résiduelle d’adsorption de suspensions de CAP âgées. L’importance relative de l’adsorption et de la biodégradation dans les réacteurs à CAP âgés sur le traitement des composés dissous est inconnue, ce qui empêche notamment l’optimisation du procédé. <p><p>Le principal objectif de ce projet de recherche est de décrire la performance du contacteur à CAP du PMH pour l’enlèvement de l’azote ammoniacal, du carbone organique dissous (COD), du COD biodégradable (CODB) et des micropolluants. Dans ce projet, l’emphase est placée sur l’opération du PMH avec de hauts temps de rétention de CAP. <p><p>La première phase de ce projet a consisté en une série de développements méthodologiques, base nécessaire à l’étude du CAP âgé. Des méthodes permettant la quantification de la biomasse hétérotrophe et nitrifiante colonisant le CAP âgé ont mis en évidence des densités de biomasse similaires à celle du charbon actif en grain en surface de filtre biologiques. L’irradiation aux rayons gamma a été démontrée comme une méthode adéquate pour produire des témoins abiotiques à partir de CAP de 10 et de 60 jours.<p><p>La seconde partie de cette étude s’est concentrée sur la démonstration de l’efficacité du PMH pour l’enlèvement de l’azote ammoniacal, du COD, ainsi que d’un mélange de micropolluants. Les cinétiques d’enlèvements ayant lieu au sein de des contacteurs à CAP ont été simulées en laboratoire sous diverses conditions (température, concentration en CAP, âge de CAP, matrice d’eau variable, temps de contact). Deux modèles cinétiques prédisant l’enlèvement de l’azote ammoniacal et du COD dans le PMH ont été développés sur base des simulations en laboratoire suivies sur CAP neuf, colonisé et abiotique. <p><p>De manière générale, les travaux réalisés au cours de ce doctorat ont mis en évidence le rôle majeur de l’adsorption résiduelle sur l’enlèvement de la contamination dissoute. Alors que l’enlèvement d’azote ammoniacal a majoritairement eu lieu par nitrification, le COD et les micropollutants sont principalement adsorbés sur le CAP colonisé. Il a aussi été montré que la capacité d’adsorption résiduelle des suspensions de CAP âgées peut agir en tampon, permettant de faire face à une augmentation soudaine de la concentration en azote ammoniacal, en COD ou en micropolluants. Le suivi des cinétiques d’enlèvement a permis de démontrer que la concentration, l’âge de CAP et le temps de rétention hydraulique (TRH) sont trois paramètres clefs pour l’optimisation du procédé. D’un point de vue économique, un TRH inférieur à 15 min est néanmoins désiré pour limiter les coûts du procédé. Par ailleurs, l’intérêt économique associé à l’augmentation de l’âge du CAP peut-être atténué par le besoin d’augmenter la concentration en CAP si l’adsorption est le mécanisme visé. De façon générale, ce projet démontre qu’une optimisation à l’échelle pilote du procédé est nécessaire car les objectifs de traitement, la qualité de l’eau à traiter et le fait que les 3 paramètres d’opération soient inter-reliés complexifient l’optimisation du PMH. Étant donné l’impact du TRH sur le coût du PMH, de futures recherches devraient viser à l’optimisation du mélange. <p>Hybrid membrane processes (HMPs) couple membrane filtration with powdered activated carbon (PAC). In HMPs, low-pressure membranes ensure an efficient particle removal, including protozoan parasites such as Cryptosporidium, while the PAC contactor is devoted to the removal of dissolved compounds. Such processes are emerging as a promising alternative to conventional treatment chains, which no longer allow the drinking water facilities to comply with increasingly stringent regulations on the treated water quality. To decrease the operating costs associated with virgin PAC consumption, it was suggested to let the PAC age in the PAC contactor of the process. Until now, the potential of using aged PAC in HMPs has been demonstrated for ammonia and DOC removal, but the potential to remove micropollutants remains unknown. It is suggested that the biological activity in aged PAC contactors contributes significantly to the removal of the dissolved compounds. Yet, neither the extent of the biomass on the aged PAC, nor the residual adsorption capacity, was quantified. No study focused on discriminating the mechanisms responsible for the treatment when using aged PAC suspensions. Most of the data published on HMPs using aged PAC were gathered at pilot scale under warm water conditions, yet the efficiency of the process is most likely sensitive to temperature changes. There is currently little information available on the efficiency of HMPs under cold water conditions. This lack of information hinders the optimization of the HMP, leading to sub-optimal usage of aged PAC.<p><p>The main objective of this research project is to describe the performance of the PAC contactor of HMPs in removing ammonia, dissolved organic carbon (DOC), biodegradable DOC (BDOC) and micropollutants. In particular, emphasis was placed on the operation of the HMP under high PAC residence times. On a more detailed level, the objectives of this project were (1) to develop and compare methods to quantify the biomass developed on aged PAC, (2) to develop a method to produce an abiotic control for aged PAC, (3) to characterize the removal kinetics of ammonia, DOC, BDOC and micropollutants occurring in the carbon contactor of an HMP, (4) to evaluate the impact of water temperature on the performance of the carbon contactor of an HMP, (5) to discriminate the relative importance of adsorption versus biological oxidation as mechanisms responsible for ammonia, DOC and micropollutants removal in the PAC contactor of an HMP, and finally (6) to differentiate the relative importance of the hydraulic retention time (HRT), the PAC age and the PAC concentration as key operating parameters on the optimization of the performance of the PAC contactor of an HMP.<p><p><p>To set the basis on the study of aged PACs, the first part of this research project consisted in methodological developments i) to quantify the heterotrophic and nitrifying biomass colonizing aged PAC, and ii) to create a reliable abiotic control of the colonized PAC, which is required for discriminating the mechanisms occurring on aged PAC. Heterotrophic and nitrifying biomass quantifying methods developed for colonized granular activated carbon (GAC) were successfully adapted to the aged PAC. The preferred methods were the potential 14C-glucose respiration (PGR) rate and the potential nitrifying activity (PNA), as they quantify the active heterotrophic and nitrifying biomass, which is most likely responsible for the depletion of BDOC and ammonia. An alternative method to the PGR, the potential acetate uptake (PAU) rate, was developed to alleviate the logistical and budgetary issues associated with the utilization of radio-labeled glucose. The densities (per gram of dry PAC) of both active heterotrophic and nitrifying biomasses were found comparable to that of the GAC sampled from the surface of a biological GAC filter. The gamma-irradiation was demonstrated as a reliable method to produce abiotic samples from soils, and was therefore chosen to produce abiotic colonized PAC samples in this project. In order to determine the optimized dosage of gamma-rays, increased doses were applied on PAC samples. Heterotrophic plate counts and methylene blue adsorption kinetics were used to determine respectively the lowest gamma ray dose required to inhibit the bacterial activity, and the highest dose that could be applied without affecting the aged PAC adsorption capacity and kinetics. Refractory DOC (RDOC) adsorption kinetics confirmed the accuracy of the dose chosen as the adsorptive behavior of the aged PAC was not affected. PGR rates were decreased 83% at the optimized dose. The gamma-irradiation method was therefore proven efficient and used in the following work phases of this research.<p><p>The second part of this study focused on the removal of ammonia, DOC and a mixture of micropollutants. Firstly, the PAC contactor of an HMP was simulated at lab-scale to monitor ammonia removal kinetics. Three PAC concentrations (approximately 1-5-10 g/L) of three PAC ages (0-10-60 days) were tested at two temperatures (7-22°C), in settled water with ambient influent condition (100 µg N–NH4/L) as well as under a simulated peak pollution scenario (1000 µg N–NH4/L). The kinetics evidenced that ammonia flux at pilot scale limited biomass growth (HRT = 67 min). In contrast, PAC colonization was not limited by the available surface and thus, PAC concentration was not a key operating parameter under the colonizing conditions tested (5-10 g/L). Ammonia adsorption was significant onto virgin PAC but the ammonia nitrification was crucial to reach complete ammonia removal at 22°C. When using colonized PAC, the 60-d PAC offered a better resilience to temperature decreases (78% at 7°C) as well as lower operating costs than the 10-d PAC (<10% at 7°C). Significant ammonia adsorption was also evidenced on 60-d PAC suspension, most probably due to PAC and the presence of suspended solids, but not on 10-d PAC. Adsorption and nitrifying activity were superior on 60-d PAC than on 10-d PAC at 7°C. In case of peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed 50% ammonia removal on 10-d and 60-d PAC at 22°C. A kinetics based model was developed to predict ammonia removals and to determine the relative importance of the adsorption and nitrification on colonized PAC under the conditions tested. <p><p>DOC, BDOC and RDOC removals occurring in the PAC contactor of an HMP were also simulated at lab-scale. Similar conditions to that of the ammonia removal kinetics were tested. The initial ammonia concentration remained untouched in the water matrices (settled water and raw water) but the BDOC-to-DOC ratio was altered by pre-ozonation (0 to 1.5 g O3/g C). The 10-d and 60-d abiotic controls were used to discriminate DOC adsorption from biodegradation. DOC biodegradation contributed marginally to DOC removal in the investigated conditions and DOC adsorption was increased at higher temperature. An original model integrating the PAC age distribution was developed to predict DOC removal in aged PAC contactors operated at steady-state. At a mean PAC residence time of 60-d, the younger PAC fraction (25-d and less) was primarily responsible for DOC adsorption (> 80%). This fraction represents 34% of the mass of PAC in the contactor. When using a water matrix with a higher initial DOC concentration (raw water) or a lower affinity for PAC (pre-ozonated settled water), the residual adsorption capacity of that older fraction was proven useful. <p><p>Lastly, a mixture of micropollutants (atrazine, deethylatrazine (DEA), linuron, microcystin, caffeine, carbamazepine, sulfamethoxazole, diclofenac, progesterone and medroxyprogesterone) was spiked at environmentally relevant concentrations (from 130 ng/L to 33 µg/L) in settled water (0 and 0.85 gO3/gC). The micropollutants concentration depletion was monitored over a period of 7h to 48 h on 1 g/L of 0-d, 10-d, 60-d PAC and gamma-irradiated 60-d PAC. Even in presence of NOM, the spiked micropollutants were rapidly adsorbed on aged PAC. No biodegradation was observed. Removals superior to 95% were reached within 5 minutes, and direct competition with NOM did not impact the efficiency of the process when micropollutants were spiked at environmentally relevant concentrations. Therefore, HMPs operated to remove DOC and ammonia can control transient micropollutant pollution and comply with the World health Organization recommendations for atrazine (2 µg/L) and microcystin (1 µg/L). However, the stricter European regulations for atrazine and DEA (0.1 µg/L) could not be met with 10-d and 60-d PAC under the operating conditions tested. Reaching such strict treatment objective would require a specific optimization of the process. <p><p>In general, this PhD research evidenced the role of the residual adsorption of aged PAC suspensions for the treatment of dissolved compounds. From the results obtained in this project, the potential of HMPs using aged PAC to remove micropollutants was evidenced. Additional research is however required to validate this potential under varied operating conditions. The modeling work improved the understanding of aged PACs. Finally, this research work provides original information on the optimization of HMPs. The optimization of the operating parameters will vary with the water quality targeted and the quality of the influent water. The PAC concentration, PAC age and HRT are inter-related. Therefore, it is recommended to optimize the operation of HMPs at pilot scale. Seasonal variations should be accounted for. An HRT of at least 15 min is required when the biological activity is mandatory to reach the water quality objectives. Lower HRT might be applied if adsorption is favored. Finally, as the HRT has a strong impact on the total cost of the process (capital and operational expenditure), PAC contactors’ hydraulic should be the point of focus of future research.& / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209254 |
Date | 18 August 2014 |
Creators | Stoquart, Céline |
Contributors | Barbeau, Benoit, Servais, Pierre, Prévost, Michèle, Haut, Benoît, Verbanck, Michel, Hoffman, Ron |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Ecole Interfacultaire des Bioingénieurs, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 1 v. (253 p.), No full-text files |
Page generated in 0.0035 seconds