O número de contato do Rn (em inglês, kissing number) é o maior número de esferas de raio unitário e interiores dois-a-dois disjuntos que podem tocar simultaneamente uma esfera de raio unitário central. Nesta dissertação estudamos métodos que limitam o tamanho de tais configurações através de técnicas de otimização, como dualidade e programação semidefinida. O principal resultado obtido foi o cálculo de melhores limitantes para o número de contato nas dimensões 9 a 23; o que foi possível graças à exploração de simetrias dos polinômios presentes no limitante proposto por Bachoc e Vallentin (2008), levando à consideração de programas semidefinidos menores. Por fim, o limitante estudado é estendido para uma classe mais geral de problemas. / The kissing number of Rn is the maximum number of pairwise-nonoverlapping unit spheres that can simultaneously touch a central unit sphere. In this thesis we study methods to bound from above the size of such configurations using optimization techniques, like duality and semidefinite programming. The main result achieved is the computation of better bounds for the kissing number in dimensions 9 to 23; a result possible due to the exploitation of symmetries in the polynomials present in the bound proposed by Bachoc and Vallentin (2008), leading to the consideration of smaller semidefinite programs. Finally, the studied bound is extended to a bigger class of problems.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17052017-225346 |
Date | 21 February 2017 |
Creators | Machado, Fabrício Caluza |
Contributors | Oliveira Filho, Fernando Mario de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds