Return to search

Improving Knee Cartilage Segmentation using Deep Learning-based Super-Resolution Methods / Förbättring av knäbrosksegmentering med djupinlärningsbaserade superupplösningsmetoder

Segmentation of the knee cartilage is an important step for surgery planning and manufacturing patient-specific prostheses. What has been a promising technology in recent years is deep learning-based super-resolution methods that are composed of feed-forward models which have been successfully applied on natural and medical images. This thesis aims to test the feasibility to super-resolve thick slice 2D sequence acquisitions and acquire sufficient segmentation accuracy of the articular cartilage in the knee. The investigated approaches are single- and multi-contrast super-resolution, where the contrasts are either based on the 2D sequence, 3D sequence, or both. The deep learning models investigated are based on predicting the residual image between the high- and low-resolution image pairs, finding the hidden latent features connecting the image pairs, and approximating the end-to-end non-linear mapping between the low- and high-resolution image pairs. The results showed a slight improvement in segmentation accuracy with regards to the baseline bilinear interpolation for the single-contrast super-resolution, however, no notable improvements in segmentation accuracy were observed for the multi-contrast case. Although the multi-contrast approach did not result in any notable improvements, there are still unexplored areas not covered in this work that are promising and could potentially be covered as future work. / Segmentering av knäbrosket är ett viktigt steg för planering inför operationer och tillverkning av patientspecifika proteser. Idag segmenterar man knäbrosk med hjälp av MR-bilder tagna med en 3D-sekvens som både tidskrävande och rörelsekänsligt, vilket kan vara obehagligt för patienten. I samband med 3D-bildtagningar brukar även thick slice 2D-sekvenser tas för diagnostiska skäl, däremot är de inte anpassade för segmentering på grund av för tjocka skivor. På senare tid har djupinlärningsbaserade superupplösningsmetoder uppbyggda av så kallade feed-forwardmodeller visat sig vara väldigt framgångsrikt när det applicerats på verkliga- och medicinska bilder. Syftet med den här rapporten är att testa hur väl superupplösta thick slice 2D-sekvensbildtagningar fungerar för segmentering av ledbrosket i knät. De undersökta tillvägagångssätten är superupplösning av enkel- och flerkontrastbilder, där kontrasten är antingen baserade på 2D-sekvensen, 3D-sekvensen eller både och. Resultaten påvisar en liten förbättring av segmenteringnoggrannhet vid segmentering av enkelkontrastbilderna över baslinjen linjär interpolering. Däremot var det inte någon märkvärdig förbättring i superupplösning av flerkontrastbilderna. Även om superupplösning av flerkontrastmetoden inte gav någon märkbar förbättring segmenteringsresultaten så finns det fortfarande outforskade områden som inte tagits upp i det här arbetet som potentiellt skulle kunna utforskas i framtida arbeten.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-297900
Date January 2021
CreatorsKim, Max
PublisherKTH, Medicinteknik och hälsosystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2021:068

Page generated in 0.0028 seconds