For a long time, there has been little research on dynamic social networks. However, in recent years, there has been much more focus on this field and many techniques for analyzing temporal aspects of social networks were proposed. In this work, we studied a dynamic social network based on data retrieved from the Commercial Register. This registry contains information about all economic entities that operate in the Czech Republic, including people who hold functions in entities and their addresses of living. We applied several data analysis techniques including community tracing, clustering, and methods for identifying key actors to find important entities and individuals in the social network and inspect their changes over time. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:438020 |
Date | January 2021 |
Creators | Hudeček, Ján |
Contributors | Mrázová, Iveta, Vomlelová, Marta |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds