Return to search

Development and validation of models for bubble coalescence and breakup

A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model.
For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the gaseous phase from the injection position at the pipe wall to the whole cross section is overpredicted by the Test Solver especially for the test points with high superficial gas velocity. Besides the models for bubble forces, the simplification of the Test Solver to a 1D model has an influence on the redistribution process. Simulations performed using CFX show that a considerable improvement is achieved with comparison to the results delivered by the standard closure models. For the breakup-dominant cases, the breakup rate is again overestimated and the contribution of wake entrainment of large bubbles is underestimated. Furthermore, inlet conditions for the liquid phase, bubble forces as well as turbulence modeling are shown to have a noticeable influence, especially on the redistribution of the gaseous phase.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:d120-qucosa-134760
Date20 February 2014
CreatorsLiao, Yixiang
ContributorsTU Dresden,, Helmholtz-Zentrum Dresden-Rossendorf,
PublisherForschungszentrum Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:report
Formatapplication/pdf
Relationdcterms:isPartOf:Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-041

Page generated in 0.0023 seconds