Using an optimized KOH activation procedure we prepared highly porous graphene scaffoldmaterials with SSA values up to 3400m² g⁻¹ and a pore volume up to 2.2 cm³ gˉ¹, which are among the highest for carbon materials. Hydrogen uptake of activated graphene samples was evaluated in a broad temperature interval (77–296 K). After additional activation by hydrogen annealing the maximal excess H2 uptake of 7.5 wt% was obtained at 77 K. A hydrogen storage value as high as 4 wt% was observed already at 193 K (120 bar H₂), a temperature of solid CO₂, which can be easily maintained using common industrial refrigeration methods.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36058 |
Date | 19 December 2019 |
Creators | Klechikov, Alexey, Mercier, Guillaume, Sharifi, Tiva, Baburin, Igor A., Seifert, Gotthard, Talyzin, Alexandr V. |
Publisher | Royal Society of Chemistry |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1364-548X, 10.1039/c5cc05474e, info:eu-repo/grantAgreement/European Commission/FP7 | SP1 | ICT/604391//Graphene-Based Revolutions in ICT And Beyond/GRAPHENE |
Page generated in 0.0021 seconds