In the doctoral thesis, the bi-layer ceramic bodies with core-shell geometry were prepared by thermoplastic co-extrusion method and for these composite bodies the mechanical properties were studied. For study of co-extrusion and mechanical properties were designed two composite systems. First system ZTA-A combined the dense core ZTA (zirconia-toughened alumina) and the dense shell Al2O3. Second system ZST-Z consisted of porous core and dense shell made from ZrO2 for both cases. In the thesis, the rheology of ceramic thermoplastic suspensions and their mutual influence during co-extrusion was studied. Subsequently, the debinding process and sintering were studied, and based on the optimization of all process steps were obtained defect-free bodies with core-shell geometry. The mechanical properties (elastic modulus, hardness and bending strength) were determined for sintered bodies. To estimate the stress path in the core shell bodies loaded in bending, the relationship considering different elastic moduli of the core and the shell was used. For bodies of ZTA-A system was increased the strength in comparison with monolithic bodies of the individual components. Thus, bodies with high surface hardness of shell from Al2O3 and moreover having high fracture strength in bending were obtained. The effective elastic modulus was decreased for bodies of ZST-Z system up to 25 % in comparison with the elastic modulus of dense monolithic samples. The same effective modulus of elasticity was possible to achieve with core-shell bodies while maintaining significantly higher fracture strength than monolithic porous bodies or pipes.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234577 |
Date | January 2015 |
Creators | Kaštyl, Jaroslav |
Contributors | Pabst, Willi, Hadraba, Hynek, Trunec, Martin |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds