Topological insulators and topological crystalline insulators are materials that have a bulk band structure that is gapped, but that also have toplogically protected non-gapped surface states. This implies that the bulk is insulating, but that the material can conduct electricity on some of its surfaces. The robustness of these surface states is a consequence of time-reversal symmetry, possibly in combination with invariance under other symmetries, like that of the crystal itself. In this thesis we review some of the basic theory for such materials. In particular we discuss how topological invariants can be derived for some specific systems. We then move on to do band structure calculations using the tight-binding method, with the aim to see the topologically protected surface states in a topological crystalline insulator. These calculations require the diagonalization of block tridiagonal matrices. We finish the thesis by studying the properties of such matrices in more detail and derive some results regarding the distribution and convergence of their eigenvalues.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-65536 |
Date | January 2018 |
Creators | Edvardsson, Elisabet |
Publisher | Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds