Return to search

Time-odor learning in \(Drosophila\) \(melanogaster\) / Olfaktorisches Zeitgedächtnis bei \(Drosophila\) \(melanogaster\)

Endogenous clocks help animals to anticipate the daily environmental changes. These
internal clocks rely on environmental cues, called Zeitgeber, for synchronization. The
molecular clock consists of transcription-translation feedback loops and is located in
about 150 neurons (Helfrich-Förster and Homberg, 1993; Helfrich-Förster, 2005). The
core clock has the proteins Clock (CLK) and Cycle (CYC) that together act as a
transcription activator for period (per) and timeless (tim) which then, via PER and TIM
block their own transcription by inhibiting CLK/CYC activity (Darlington et al., 1998;
Hardin, 2005; Dubruille and Emery, 2008). Light signals trigger the degradation of TIM
through a blue-light sensing protein Cryptochrome (CRY) and thus, allows CLK/CYC to
resume per and tim transcription (Emery et al., 1998; Stanewsky et al., 1998).
Therefore, light acts as an important Zeitgeber for the clock entrainment. The
mammalian clock consists of similarly intertwined feedback loops.
Endogenous clocks facilitate appropriate alterations in a variety of behaviors
according to the time of day. Also, these clocks can provide the phase information to the
memory centers of the brain to form the time of day related associations (TOD). TOD
memories promote appropriate usage of resources and concurrently better the survival
success of an animal. For instance, animals can form time-place associations related to
the availability of a biologically significant stimulus like food or mate. Such memories will
help the animal to obtain resources at different locations at the appropriate time of day.
The significance of these memories is supported by the fact that many organisms
including bees, ants, rats and mice demonstrate time-place learning (Biebach et al.
1991; Mistlberger et al. 1997; Van der Zee et al. 2008; Wenger et al. 1991). Previous
studies have shown that TOD related memories rely on an internal clock, but the identity
of the clock and the underlying mechanism remain less well understood. The present
study demonstrates that flies can also form TOD associated odor memories and further
seeks to identify the appropriate mechanism.
Hungry flies were trained in the morning to associate odor A with the sucrose
reward and subsequently were exposed to odor B without reward. The same flies were
exposed in the afternoon to odor B with and odor A without reward. Two cycles of the
65
reversal training on two subsequent days resulted in the significant retrieval of specific
odor memories in the morning and afternoon tests. Therefore, flies were able to
modulate their odor preference according to the time of day. In contrast, flies trained in
a non-reversal manner were unable to form TOD related memories. The study also
demonstrates that flies are only able to form time-odor memories when the two
reciprocal training cycles occur at a minimum 6 h interval.
This work also highlights the role of the internal state of flies in establishing timeodor
memories. Prolonged starvation motivates flies to appropriate their search for the
food. It increases the cost associated with a wrong choice in the T-maze test as it
precludes the food discovery. Accordingly, an extended starvation promotes the TOD
related changes in the odor preference in flies already with a single cycle of reversal
training. Intriguingly, prolonged starvation is required for the time-odor memory
acquisition but is dispensable during the memory retrieval.
Endogenous oscillators promote time-odor associations in flies. Flies in constant
darkness have functional rhythms and can form time-odor memories. In contrast, flies
kept in constant light become arrhythmic and demonstrated no change in their odor
preference through the day. Also, clock mutant flies per01 and clkAR, show compromised
performance compared to CS flies when trained in the time-odor conditioning assay.
These results suggest that flies need a per and clk dependent oscillator for establishing
TOD related memories. Also, the clock governed rhythms are necessary for the timeodor
memory acquisition but not for the retrieval.
Pigment-Dispersing Factor (PDF) neuropeptide is a clock output factor (Park and
Hall, 1998; Park et al., 2000; Helfrich-Förster, 2009). pdf01 mutant flies are unable to
form significant time-odor memories. PDF is released by 8 neurons per hemisphere in
the fly brain. This cluster includes the small (s-LNvs) and large (l-LNvs) ventral lateral
neurons. Restoring PDF in these 16 neurons in the pdf01 mutant background rescues
the time-odor learning defect. The PDF neuropeptide activates a seven transmembrane
G-protein coupled receptor (PDFR) which is broadly expressed in the fly brain (Hyun et
al., 2005). The present study shows that the expression of PDFR in about 10 dorsal
neurons (DN1p) is sufficient for robust time-odor associations in flies.
66
In conclusion, flies use distinct endogenous oscillators to acquire and retrieve
time-odor memories. The first oscillator is light dependent and likely signals through the
PDF neuropeptide to promote the usage of the time as an associative cue during
appetitive conditioning. In contrast, the second clock is light independent and
specifically signals the time information for the memory retrieval. The identity of this
clock and the underlying mechanism are open to investigation. / Die endogenen circadianen Uhren helfen Tieren, die täglichen Veränderungen der Umwelt zu antizipieren. Diese internen Uhren stützen sich auf externe Umweltreize, sogenannte Zeitgeber, die den Tagesrhythmus vorgeben. Im Fliegengehirn bilden etwa 150 Neuronen die zentrale innere Uhr (Helfrich-Förster and Homberg, 1993; Helfrich- Förster, 2005). Diese Neuronen exprimieren die molekulare Uhr, die aus Transkriptions- Translations-Feedback-Schleifen besteht. Die Uhr besitzt die Proteine Clock (CLK) und Cycle (CYC), die zusammen die Transkription von period (per) und timeless (tim) aktivieren. PER und TIM bilden dann ein Heterodimer um die Transkription von clk und cyc zu blockieren (Darlington et al., 1998; Hardin, 2005; Dubruille and Emery, 2008).
Lichtsignale lösen den Abbau von TIM durch das für blaues Licht sensitive‚ 'Sensing Protein Cryptochrome‘ (CRY) aus, daß wiederum CLK und CYC freisetzt um die per und tim Transkription wieder aufzunehmen (Emery et al., 1998; Stanewsky et al., 1998). Daher wirkt Licht als wichtiger Zeitgeber. Die innere Uhr der Säuger besteht aus ähnlich miteinander verflochtenen Rückkopplungsschleifen.
Die internen Uhren ermöglichen und erleichtern Verhaltensveränderungen in einer Vielzahl von Situation, entsprechend der Tageszeit. Zudem wird die Information den jeweiligen Speicherorten im Gehirn bereit gestellt, um zeitbezogene Gedächtnisbildung zu ermöglichen. Zeitabhängige Gedächtnisbildung sorgt für eine angemessene Nutzung der Ressourcen und sichert gleichzeitig das Überleben des Tieres. Zum Beispiel können Tiere Zeit-Ort-Assoziationen im Zusammenhang mit der Verfügbarkeit einer biologisch wichtigen Ressource, wie Nahrung oder Paarungspartnern bilden. Solche Assoziationen helfen dem Tier Ressourcen an verschiedenen Orten, abhängig von der Tageszeit, zu erschließen. Die Wichtigkeit dieser Fähigkeit wird durch die Tatsache gestützt, daß zum Beispiel Bienen, Ameisen, Ratten und Mäuse ein zeitlich abhängiges Ortgedächtnis bilden können (Biebach et al. 1991; Mistlberger et al. 1997; Van der Zee et al. 2008; Wenger et al. 1991). Frühere Studien haben gezeigt, daß zeitbezogene Erinnerungen auf einer internen Uhr beruhen. Die genaue Identität dieser Uhr und die zugrunde liegenden Mechanismen sind jedoch
nicht ausreichend bekannt. In der vorliegenden Studie wird gezeigt, daß Fliegen in der

Lage sind ein zeitabhängiges olfaktorisches Gedächtnis zu bilden. Zudem wird versucht
die zugrunde liegenden molekularen Mechanismen zu identifizieren.
Hungrige Fliegen werden zu verschiedenen Tageszeiten konditioniert verschiedene Gerüche mit einer Saccharose-Belohnung zu assoziieren. Morgens ist Geruch A mit Zucker gepaart während Geruch B ohne Zucker präsentiert wird, am Nachmittag ist Geruch B belohnt, Geruch A nicht. Dieses reziproke Training wird an zwei aufeinander folgenden Tagen durchgeführt. Am dritten Tag werden die Fliegen entweder am Morgen oder Nachmittag auf ihre Geruchspräferenz zwischen A und B getestet. Die Fliegen modulieren ihre Geruchspräferenz abhängig von der Tageszeit. Im Gegensatz dazu sind Fliegen, die nicht mittels eines reziproken Trainings konditioniert wurden, nicht in der Lage, ein zeitabhängiges olfaktorisches Gedächtnis zu bilden. Die Ergebnisse zeigen auch, daß Fliegen nur dann in der Lage sind zeitbezogene Erinnerungen zu bilden, wenn die beiden reziproken Trainingszyklen mindestens 6 h voneinander getrennt durchgeführt werden.
Die Arbeit ebeleuchtet zudem die Rolle des internen Zustands der Fliegen im Kontext des zeitabhängigen olfaktorischen Gedächtnisses. Länger andauernder Hunger motiviert die Fliegen stärker ihre Suche nach Nahrung zeitlich anzupassen. Schon ein Zyklus reziproken Trainings reicht für die Bildung Zeit-spezifischen Geruchsgedächtnisses aus. Die Erhöhung der Kosten, die mit einer falschen Wahl in einem T-maze-Test verbunden ist, kann offenbar zeitabhängige Änderungen der Geruchspräferenzen in Fliegen begünstigen. Erstaunlicherweise begünstigt der Hunger speziell die Gedächtnisbildung, ist jedoch für den Test nicht erforderlich.
Endogene circadiane Oszillatoren werden für das zeitabhängige olfaktorische Gedächtnis der Fliegen gebraucht. Fliegen, die im Dauerdunkel gehalten wurden, zeigen rhythmisches Verhalten so wie zeitbezogenes olfaktorisches Gedächtnis. Im Gegensatz dazu sind im Dauerlicht aufgezogene Fliegen arrhythmisch und zeigen kein Zeit-spezifisches Geruchsgedächtnis. Zudem sind auch die arrhythmischen Mutanten per01 und clkAR in der Zeit-Geruchskonditionierung gestört. Diese Ergebnisse legen nahe, daß Fliegen einen per- und clk-abhängigen Oszillator benötigen, der von externen Lichtsignalen abhängig ist, um ein zeitabhängiges olfaktorisches Gedächtnis
zu bilden. Außerdem wird der durch die innere Uhr vorgegebene Rhythmus nur
während der Gedächtnisbildung und nicht für das Abrufen des Gelernten benötigt. Pigment dispersing factor (PDF) ist ein Neuropeptid, das von Neuronen der inneren Uhr gebildet wird (Park and Hall, 1998; Park et al., 2000; Helfrich-Förster,
2009). Die pdf01-Mutante ist nicht in der Lage ein signifikantes zeitbezogenes
olfaktorisches Gedächtnis zu bilden. PDF wird von jeweils einer Gruppe von 8 Neuronen pro Hemisphäre, die die kleinen und großen ventral-lateralen Neuronen umfaßt, sezerniert. Die Wiederherstellung der Expression von PDF in diesen 16 Neuronen im pdf01 Mutanten Hintergrund, rettet das zeitabhängige olfaktorische Gedächtnis. Das PDF-Neuropeptid aktiviert einen sieben-Transmembran-G-Protein- gekoppelten Rezeptor (PDFR), der weit verbreitet im Fliegenhirn exprimiert wird (Hyun et al., 2005). Diese Studie zeigt, daß die Expression von PDFR in ~ 10 dorsalen
Neuronen (DN1p) für eine robuste zeitabhängige olfaktorische Gedächtnisbildung in Fliegen ausreicht.
Zusammenfassend läßt sich sagen, daß Fliegen verschiedene endogene Oszillatoren benutzen um ein zeitabhängiges olfaktorische Gedächtnis zu bilden und abzurufen. Der erste Oszillator ist lichtabhängig und wahrscheinlich durch das PDF- Neuropeptid vermittelt. Es ermöglicht die Verwendung der Information 'Zeit' als assoziatives Signal während der appetitiven Konditionierung. Im Gegensatz dazu ist die zweite Uhr lichtunabhängig und vermittelt speziell die Zeitinformation für die Gedächtnisabfrage. Die Identität der zweiten Uhr und der zugrunde liegende Mechanismus sowie die zugrunde liegende Kommunikation zwischen den Neuronen, bedarf weiterer Untersuchungen.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:14567
Date January 2017
CreatorsChouhan, Nitin Singh
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds