Return to search

Automatic Image Annotation by Sharing Labels Based on Image Clustering / Automatisk bildannotering med hjälp av tagg-delning baserat på bildklustering

The growth of image collection sizes during the development has currently made manual annotation unfeasible, leading to the need for accurate and time efficient image annotation methods. This project evaluates a system for Automatic Image Annotation to see if it is possible to share annotations between images based on un-supervised clustering. The evaluation of the system included performing experiments with different algorithms and different unlabeled data sets. The system is also compared to an award winning Convolutional Neural Network model, used as a baseline, to see if the system’s precision and/or recall could be better than the baseline model’s. The results of the experiment conducted in this work showed that the precision and recall could be increased on the data used in this thesis, an increase of 0.094 in precision and 0.049 in recall in average for the system compared to the baseline. / Utvecklingen av bildkollektioners storlekar har fram till idag ökat behovet av ett pålitligt och effektivt annoteringsverktyg i och med att manuell annotering har blivit ineffektivt. Denna rapport utvärderar möjligheterna att dela bildtaggar mellan visuellt lika bilder med ett system för automatisk bildannotering baserat på klustring. Utvärderingen sker i form av flera experiment med olika algoritmer och olika omärkta datamängder. I experimenten är systemet jämfört med en prisbelönt konvolutionell neural nätverksmodell, vilken är använd som utgångspunkt, för att undersöka om systemets resultat kan bli bättre än utgångspunktens resultat. Resultaten visar att både precisionen och återkallelsen förbättrades i de experiment som genomfördes på den data använd i detta arbete. En precisionsökning med 0.094 och en återkallelseökning med 0.049 för det implementerade systemet jämfört med utgångspunkten, över det genomförda experimenten.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-210164
Date January 2017
CreatorsSpång, Anton
PublisherKTH, Skolan för datavetenskap och kommunikation (CSC)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds