This thesis deals with problems of recommender systems and their usage in web applications. There are three main data mining techniques summarized and individual approaches for recommendation. Main part of this thesis is a suggestion and an implementation of web applications for recommending dishes from restaurants. Algorithm for food recommending is designed and implemented in this paper. The algorithm deals with the problem of frequently changing items. The algorithm utilizes hybrid filtering technique which is based on content and knowledge. This filtering technique uses cosine vector similarity for computation.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:235452 |
Date | January 2013 |
Creators | Hlaváček, Pavel |
Contributors | Bartík, Vladimír, Zendulka, Jaroslav |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds