Return to search

Metody krylovovských podprostorů - Analýza a aplikace / Krylov Subspace Methods - Analysis and Application

Title: Krylov Subspace Methods - Analysis and Application Author: Tomáš Gergelits Department: Department of Numerical Mathematics Supervisor: prof. Ing. Zdeněk Strakoš, DrSc., Department of Numerical Mathematics Abstract: Convergence behavior of Krylov subspace methods is often studied for linear algebraic systems with symmetric positive definite matrices in terms of the condition number of the system matrix. As recalled in the first part of this thesis, their actual convergence behavior (that can be in practice also substantially affected by rounding errors) is however determined by the whole spectrum of the system matrix, and by the projections of the initial residual to the associated invariant subspaces. The core part of this thesis investigates the spectra of infinite dimensional operators −∇ · (k(x)∇) and −∇ · (K(x)∇), where k(x) is a scalar coefficient function and K(x) is a symmetric tensor function, preconditioned by the Laplace operator. Subsequently, the focus is on the eigenvalues of the matrices that arise from the discretization using conforming finite elements. Assuming continuity of K(x), it is proved that the spectrum of the preconditi- oned infinite dimensional operator is equal to the convex hull of the ranges of the diagonal function entries of Λ(x) from the spectral decomposition K(x) =...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:437023
Date January 2020
CreatorsGergelits, Tomáš
ContributorsStrakoš, Zdeněk, Farrell, Patrick, Herzog, Roland
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0088 seconds