Liver macrophages (LMs) play a central role in acute and chronic liver pathologies. Investigation of these processes in humans as well as the development of diagnostic tools and new therapeutic strategies require in vitro models that closely resemble the in vivo situation. In our study, we sought to gain further insight into the role of LMs in different liver pathologies and into their characteristics after isolation from liver tissue. For this purpose, LMs were characterized in human liver tissue sections using immunohistochemistry and bioinformatic image analysis. Isolated cells were characterized in suspension using FACS analyses and in culture using immunofluorescence staining and laser scanning microscopy as well as functional assays. The majority of our investigated liver tissues were characterized by anti-inflammatory LMs which showed a homogeneous distribution and increased cell numbers in correlation with chronic liver injuries. In contrast, pro-inflammatory LMs appeared as temporary and locally restricted reactions. Detailed characterization of isolated macrophages revealed a complex disease dependent pattern of LMs consisting of pro- and anti-inflammatory macrophages of different origins, regulatory macrophages and monocytes. Our study showed that in most cases the macrophage pattern can be transferred in adherent cultures. The observed exceptions were restricted to LMs with pro-inflammatory characteristics.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:85074 |
Date | 02 May 2023 |
Creators | Zimmermann, Andrea, Hänsel, René, Gemünden, Kilian, Kegel-Hübner, Victoria, Babel, Jonas, Bläker, Hendrik, Matz-Soja, Madlen, Seehofer, Daniel, Damm, Georg |
Publisher | MDPI |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 2227-9059, 406 |
Page generated in 0.0017 seconds