Quantum key distribution (QKD) is an application of quantum mechanics that allowstwo parties to communicate with perfect secrecy. Traditional QKD uses polarization of individual photons, but the development of energy-time entanglement could lead to QKD protocols robust against environmental effects. The security proofs of energy-time entangled QKD rely on a violation of the Bell inequality to certify the system as secure. This thesis shows that the Bell violation can be faked in energy-time entangled QKD protocols that involve a postselection step, such as Franson-based setups. Using pulsed and phase-modulated classical light, it is possible to circumvent the Bell test which allows for a local hidden-variable model to give the same predictions as the quantum-mechanical description. We show that this attack works experimentally and also how energy-time-entangled systems can be strengthened to avoid our attack.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-114073 |
Date | January 2015 |
Creators | Jogenfors, Jonathan |
Publisher | Linköpings universitet, Informationskodning, Linköpings universitet, Tekniska högskolan, Linköping |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Thesis, 0280-7971 ; 1709 |
Page generated in 0.0021 seconds