Return to search

Synthèse et propriétés des mousses minérales / Mineral foams synthesis and properties

Les mousses minérales sont des matériaux alvéolaires utilisables en isolation thermique répartie. L’objectif de ces travaux de recherche est de développer, à partir d’une suspension très concentrée de liants hydrauliques, des mousses légères présentant de bonnes performances mécaniques et thermiques. L’introduction de tensioactif est nécessaire à la formation des mousses minérales. Six molécules tensioactives sont sélectionnées dans cette étude. Leurs capacités à réduire la tension de surface et à stabiliser une mousse aqueuse sont évaluées. Deux groupes de tensioactifs sont distingués sur la base de différents critères : tension de surface, CMC, stabilité de la mousse. Les suspensions minérales concentrées sont des fluides à seuil. L’étude du comportement de bulles formées dans de tels fluides est réalisée à l’aide d’un fluide à seuil modèle transparent, le Carbopol®, et d’un système d’injection à pression contrôlée. Le seuil de mise en écoulement affecte les conditions de formation, de croissance, de stabilité et d’évolution de la forme des bulles en modifiant la distribution des pressions au voisinage de la bulle. L’étude permet de proposer une équation de Laplace modifiée prenant en compte l’influence de la sphéricité et du seuil de cisaillement. L’introduction du tensioactif affecte les conditions de contact entre bulles et permet de contrôler le risque de coalescence. En cas de rupture de membrane, la présence du seuil de cisaillement conduit à une géométrie particulière des bulles coalescées. Les liants minéraux choisis sont un sulfate de calcium anhydre particulièrement réactif, un ciment Portland et un ciment prompt. La formulation des suspensions découle d’un critère de fluidité. La pâte fraîche est caractérisée par un seuil de cisaillement faible. Sa masse volumique apparente dépend de la nature et du dosage en tensioactif. Les mousses minérales sont générées à partir d’une composition identique. Deux méthodes de moussage traditionnelles : malaxage simple et mousse préformée et une méthode alternative : la méthode dissociée, sont exploitées. Les meilleures performances thermomécaniques des mousses durcies sont obtenues avec la méthode dissociée, méthode spécifique au laboratoire et peu énergivore. Un groupe de tensioactifs permet d’obtenir des mousses peu denses satisfaisant simultanément aux critères de performances thermomécaniques fixés. Pour ces tensioactifs, un dosage caractéristique est identifié permettant une optimisation des performances mécaniques. Des visualisations réalisées au MEB révèlent des modifications sensibles de la structure cristalline fonction du tensioactif employé et de son dosage. Les structures les plus fines et homogènes sont les plus résistantes. Les performances des mousses et leur structure porale sont donc liées. Pour analyser quantitativement la structure porale, les distributions alvéolaires surfaciques sont construites puis comparées aux distributions alvéolaires volumiques obtenues par tomographie. Une méthode analytique de passage 2D/3D est créée en s’appuyant sur les principes de la stéréologie. Un coefficient de correction est proposé pour tenir compte de la représentativité de la surface étudiée. La maîtrise de toutes les étapes de fabrication des mousses minérales ainsi que la compréhension des phénomènes physiques intervenant tout au long de la production d’une mousse (de la suspension minérale jusqu’à la mousse durcie) permettent d’obtenir des produits satisfaisant les objectifs fixés : légèreté, isolation et caractère porteur. / Mineral foams are cellular materials usable as thermal insulation solution. The purpose of these PhD researches is to develop lightweight foams with good thermal and mechanical performances realized from highly concentrated mineral suspension. Surfactant addition is required for foaming. Six surfactants molecules are selected. Their abilities to reduce surface tension and to stabilize aqueous foam are evaluated. Two surfactants groups are detected based on different criteria: surface tension, CMC and aqueous foam stability. Concentrated mineral suspensions are yield stress fluids. The study of bubbles behavior in such fluids is performed with a transparent yield stress fluid, Carbopol® and an injection device with controlled pressure. Yield stress impacts bubbles creation, growth, stability and shape by changing local pressure distribution in the fluid nearby bubble. The study proposes a revised Laplace law depending on yield stress and bubble sphericity. Contact conditions between bubbles are influenced by surfactant addition allowing to control coalescence phenomena. In case of inter-bubbles membrane breakage, presence of yield stress leads to particular geometry of the coalesced bubbles. Mineral binders selected are a highly reactive anhydrous calcium sulfate, ordinary Portland and prompt cements. Mineral suspension formulations arise from expected fluidity criterion. Fresh paste is characterized by a low yield stress. Its bulk density depends on surfactant nature and content. Mineral foams are created with same composition. Two traditional foaming methods: mix-foaming and pre-foaming and an alternative one, the dissociated method are employed. Best thermo-mechanical performances are achieved with the dissociated method, a specific method of the laboratory. A surfactant group leads to lightweight foams which simultaneously fulfills both thermal and mechanical targeted objectives. For these surfactants a characteristic content is found leading to optimized mechanical performances. Visualizations performed with SEM reveal sensitive crystalline structure modifications depending on surfactant nature and content. Thinner and more homogeneous structures are associated with the best mechanical performances which demonstrates the existing link between the porous structure and mineral foams mechanical performances. To quantitatively evaluate porous structure, surface bubble-size distributions are built and then compared to volume bubble-size distributions obtained by tomography analysis. An analytic method linking 2D and 3D distributions is created based on stereology principles. A correction coefficient is proposed to take into account the analyzed representative surface. By controlling all production steps and associated physical phenomena during mineral foams production (from mineral suspension to solid foams), products satisfying all targeted objectives are realized: lightness, insulation and load-bearing ability.

Identiferoai:union.ndltd.org:theses.fr/2015ISAR0015
Date09 June 2015
CreatorsSamson, Gabriel
ContributorsRennes, INSA, Lanos, Christophe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds