Return to search

Régulation non canonique de l'activité de mTOR par la stabilisation de DEPTOR

La protéine mTOR (mechanistic Target Of Rapamycin), lorsque dérégulée, favorise le développement tumoral par ses fonctions dans la prolifération et la survie cellulaire. Son activité est contrôlée principalement par les facteurs de sa voie d'activation canonique (PTEN/PI3K/AKT) qui sont souvent mutés dans les cancers. Cependant, certains cancers ne présentent pas d'altérations dans cette voie canonique bien que mTOR soit constitutivement active, suggérant ainsi un mécanisme différent. C'est le cas des gliomes de bas grade dont une grande partie présente des mutations hétérozygotes de l'enzyme Isocitrate déshydrogénase (IDH1 et IDH2) menant à un gain de fonction de celles-ci. En effet, l'α-cétoglutarate (αKG) produite par les formes sauvages sera rapidement transformé en 2-Hydroxyglutarate (2HG) par les formes mutées. De plus, ces gliomes présentent très tôt une activité accrue de mTOR et ce, de façon PTEN indépendante. Un criblage par ARN d'interférence ciblant des enzymes αKG dépendantes a permis l'identification de KDM4A, une lysine déméthylase, comme un nouveau régulateur de mTOR. La régulation de KDM4A sur mTOR n'est pas transcriptionnelle, mais semble due à son interaction avec DEPTOR. En effet, sa stabilité, en absence de KDM4A, est grandement diminuée, ce qui favorise l'activité de mTOR. Ainsi, l'implication de KDM4A sur l'activité de DEPTOR s'avère être un nouveau mode de régulation de la protéine mTOR. Nous avons également découvert que DEPTOR peut être phosphorylé sur sa tyrosine 289, ce qui favorise l'activité de mTOR. Cette tyrosine, située près de sérines connues pour réguler la dégradation de DEPTOR, permet une meilleure stabilité de la protéine. De plus, la phosphorylation favorise une réorganisation rapide du cytosquelette d'actine par l'activation de mTORC2. Nous avons par la suite montré qu'elle diminue l'affinité de DEPTOR pour mTOR amenant une activation accrue de cette voie. Un criblage avec différents inhibiteurs de tyrosines kinases de même qu'une analyse par spectrométrie de masse nous a permis d'identifier les kinases SYK (Spleen Tyrosine Kinase) et EPHB2 comme régulateurs de la phosphorylation tyrosine de DEPTOR. En effet, nous avons démontré que la phosphorylation de SYK sur DEPTOR était dépendante de l'activation de SYK par EPHB2. En plus de cette phosphorylation tyrosine, DEPTOR possède également de nombreuses autres modifications post-traductionnelles. En effet, il peut être ubiquitinilé par des chaînes d'ubiquitine de type K48 promouvant sa dégradation par le protéasome, mais également par des chaînes d'ubiquitine K63 dont leur fonction est encore inconnue. L'absence de modification post-traductionnelles sur les 5 dernières lysines de DEPTOR augmente drastiquement la phosphorylation de la tyrosine 289 suggérant que la méthylation ou l'ubiquitination affecte cette modification. Nous avons également trouvé que DEPTOR pouvait être NEDDylée dans sa portion N-terminale au niveau de ses domaines DEP. Une analyse de spectrométrie de masse après des expériences de marquage de proximité par biotinilation a permis d'identifier de multiples enzymes pouvant potentiellement moduler ces modifications. Toutes ces modifications ouvrent la porte à de nouvelles avenues de régulation de l'activité de DEPTOR sur mTOR. L'implication de KDM4A sur l'activité de DEPTOR de même que la phosphorylation de la tyrosine 289 de DEPTOR se révèlent comme de nouveaux mécanismes régulant l'activité de mTOR pouvant expliquer l'augmentation de l'activité de mTOR dans les cancers où la voie canonique n'est pas affectée. Cela pourrait ouvrir la voie à de nouvelles avenues thérapeutiques qui, combinées à celles déjà existantes, permettra d'offrir des traitements prometteurs lorsque cette voie est dérégulée, notamment dans les gliomes de bas grade. / Dysregulated mTOR (mechanistic Target Of Rapamycin) is a potent tumor growth inducer known to promote cancer cell proliferation and survival. Its activity can be regulated by numerous factors composing the PTEN/PI3K/AKT canonical pathway, which are often mutated in cancer. However, in a subset of cancer showing a constitutively activated mTOR, there is no alteration within the canonical activation pathway, suggesting different activation mechanisms. Low-grade gliomas harbor mutation on Isocitrate dehydrogenase 1 and 2 (IDH1/2) conferring gain-of-function by the production of 2-Hydroxyglutarate (2HG) from α Ketoglutarate (αKG). This leads to a constitutive mTOR activation in a canonical independent manner. An RNAi screen led us to identify KDM4A, a αKG dependant lysine demethylase as a new regulator of mTOR activity. KDM4A interacts with DEPTOR, an endogenous inhibitor of mTOR and member of both mTOR complex. Depletion or inhibition of KDM4A by 2HG decreases DEPTOR stability and thereby increases mTOR activity. We also discovered a new post-translational modification (PTM) on DEPTOR, corresponding to a single phosphorylation event on tyrosine 289. While this modification increases DEPTOR stability, it also promotes its dissociation from mTORC1&2, leading to a rapid and sustain increase in mTORC1&2 activity. To identify the upstream signaling pathway(s) leading to tyrosine 289 phosphorylation, we performed mass spectrometry analysis, as well as a small drug screen of different tyrosine kinase inhibitors. Using these combined methods, we identify SYK (Spleen tyrosine kinase), whose expression levels correlate with levels of tyrosine 289 phosphorylation. We also found that SYK-induced phosphorylation of DEPTOR was regulated by the EPHB2 receptor. We have shown that DEPTOR harbors many other PTM like ubiquitination conjugated on lysine 48 promoting proteasomal degradation and ubiquitination conjugated on lysine 63 whose function is still unknown. The absence of PTM on the last 5 lysines of DEPTOR drastically increases the phosphorylation of tyrosine 289 suggesting that methylation and/or ubiquitination affect this modification. We also found that DEPTOR can be NEDDylated in its N-terminal part on its DEP domains. Mass spectrometry analysis after proximity biotinilation assays led us to discover multiple enzymes that could potentially modulate all these modifications. This open new insight on DEPTOR regulation and function on mTOR. Our findings uncovered new mechanisms regulating DEPTOR activity, which can explain the increased mTOR activity in cancer with unaffected PTEN/PI3K/AKT regulatory pathways. Better understanding of this mTOR/DEPTOR regulatory pathway could allow the development of a new therapeutic approach to inhibit mTOR associated cancer progression.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/70723
Date13 July 2022
CreatorsM. Gagné, Laurence
ContributorsHuot, Marc-Étienne
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxii, 229 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0019 seconds