Return to search

Rolled-up microtubes as components for Lab-on-a-Chip devices

Rolled-up nanotechnology based on strain-engineering is a powerful tool to manufacture three-dimensional hollow structures made of virtually any kind of material on a large variety of substrates. The aim of this thesis is to address the key features of different on- and off-chip applications of rolled-up microtubes through modification of their basic framework. The modification of the framework pertains to the tubular structure, in particular the diameter of the microtube, and the material which it is made of, hence achieving different functionalities of the final rolled-up structure. The tuning of the microtube diameter which is adjusted to the individual size of an object allows on-chip studies of single cells in artificial narrow cavities, for example. Another modification of the framework is the addition of a catalytic layer which turns the microtube into a self-propelled catalytic micro-engine. Furthermore, the tuneability of the diameter can have applications ranging from nanotools for drilling into cells, to cargo transporters in microfluidic channels. Especially rolled-up microtubes based on low-cost and easy to deposit materials, such as silicon oxides, can enable the exploration of novel systems for several scientific topics. The main objective of this thesis is to combine microfluidic features of rolled-up structures with optical sensor capabilities of silicon oxide microtubes acting as optical ring resonators, and to integrate these into a Lab-on-a-Chip system. Therefore, a new concept of microfluidic integration is developed in order to establish an inexpensive, reliable and reproducible fabrication process which also sustains the optical capabilities of the microtubes. These integrated microtubes act as optofluidic refractrometric sensors which detect changes in the refractive index of analytes using photoluminescence spectroscopy. The thesis concludes with a demonstration of a functional portable sensor device with several integrated optofluidic sensors. / Die auf verspannten Dünnschichten basierende „rolled-up nanotechnologie“ ist eine leistungsfähige Methode um dreidimensionale hohle Strukturen (Mikroröhrchen) aus nahezu jeder Art von Material auf einer großen Vielfalt von Substraten herzustellen.
Ausgehend von der Möglichkeit der Skalierung des Röhrchendurchmessers und der Modifikation der Funktionalität des Röhrchens durch Einsatz verschiedener Materialien und Oberflächenfunktionalisierungen kann eine große Anzahl an verschiedenen Anwendungen ermöglicht werden. Eine Anwendung behandelt unter anderem on-chip Studien einzelner Zellen wobei die Mikroröhrchen, an die Größe der Zelle angepasste, Reaktionscontainer darstellen. Eine weitere Modifikation der Funktionalität der Mikroröhrchen kann durch das Aufbringen einer katalytischen Schicht realisiert werden, wodurch das Mikroröhrchen zu einem selbstangetriebenen katalytischen Mikro-Motor wird.
Hauptziel dieser Arbeit ist es Mikrometer große optisch aktive Glasröhrchen herzustellen, diese mikrofluidisch zu kontaktieren und als Sensoren in Lab-on-a-Chip Systeme zu integrieren. Die integrierten Glasröhrchen arbeiten als optofluidische Ringresonatoren, welche die Veränderungen des Brechungsindex von Fluiden im inneren des Röhrchens durch Änderungen im Evaneszenzfeld detektieren können. Die Funktionsfähigkeit eines Demonstrators wird mit verschiedenen Flüssigkeiten gezeigt, dabei kommt ein Fotolumineszenz Spektrometer zum Anregen des Evaneszenzfeldes und Auslesen des Signals zum Einsatz. Die entwickelte Integrationsmethode ist eine Basis für ein kostengünstiges, zuverlässiges und reproduzierbares Herstellungsverfahren von optofluidischen Mikrochips basierend auf optisch aktiven Mikroröhrchen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:19806
Date09 November 2012
CreatorsHarazim, Stefan M.
ContributorsSchmidt, Oliver G., Geßner, Thomas, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds