Return to search

Behavior of jointed rock masses: numerical simulation and lab testing

The anisotropic behavior of a rock mass with persistent and planar joint sets is mainly governed by the geometrical and mechanical characteristics of the joints. The aim of the study is to develop a continuum-based approach for simulation of multi jointed geomaterials. There are two available numerical techniques for the strain-stress analysis of rock masses: continuum-based methods and discontinuum based methods. Joints are simulated explicitly in discontinuous methodology. This technique provides a more accurate description for the behavior of a rock mass. However, in some projects, the explicit definition becomes impractical, especially with increasing number of joints. Besides, the calculation efficiency will be significant reduced as the number of joints increases within the model. Considering the above mentioned shortcomings of the discontinuous method, the continuum-based approach is widely used in rock mechanics. Within the continuum methods, the discontinuities are regarded as smeared cracks in an implicit manner and all the joint parameters are incorporated into the equivalent constitutive equations.

A new equivalent continuum model, called multi-joint model, is developed for jointed rock masses which may contain up to three arbitrary persistent joint sets. The Mohr-Coulomb yield criterion is used to check failure of the intact rock and the joints. The proposed model has solved the issue of multiple plasticity surfaces involved in this approach combined with multiple failure mechanisms. The multi-joint model is implemented into FLAC and is verified against the distinct element method (UDEC), analytical solutions, and experimental data. Uniaxial compression tests with artificial rock-like material (gypsum) are carried out in the laboratory in order to verify the developed constitutive model and to investigate the behavior of jointed specimen. Samples with two crossing joints covering more than 20 angle configurations and two different property sets were prepared and tested.

Simulation results are in good agreement with experimental observations. The developed model is applied to two potential practical applications: the stability analysis of a slope and a tunnel under different stress conditions. Finally, the main achievements of the whole PhD study are summarized and future research work is proposed.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:34069
Date19 June 2019
CreatorsChang, Lifu
ContributorsKonietzky, Heinz, Engel, Jens, Shan, Renliang, Technische Universität Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds