[Truncated abstract] Antimicrobial growth promoters are added to feed to prevent lactic acidosis in ruminant animals by selectively inhibiting rumen bacteria that produce lactic acid. However, recently imposed or impending bans on the use of antimicrobial growth promoters in animal production have lead to a critical need to find practical alternatives that are safe for the animal and consumer and that obtain similar production benefits. I investigated bioactive plants of Australia for their potential to prevent lactic acidosis in ruminants. The unifying hypothesis tested was that plants would be identified that selectively inhibit lactic acid-producing bacteria and consequently protect against lactic acidosis. This hypothesis was tested in a three phase process: phase 1, plant selection and collection; phase 2, a three stage protocol for screening plants and essential oils; phase 3, in vivo experiments and chemical fractionation of the most promising plant. I developed an in vitro bioassay that simulated acidosis by adding glucose to rumen fluid in Bellco tubes and incubating for 5 h (Chapter 4). The pH and gas production were used as indicators of acidosis and fermentation activity. I used this bioassay to screen ninety-five plants (dried and ground material from 79 species) and ten essential oils and included a negative control (oaten chaff) and a positive control (virginiamycin). One plant, Eremophila glabra, produced a similar pH (5.63) to the positive control (5.43) although it inhibited gas production to a moderate extent (P < 0.05). ... Seven serrulatane diterpenes were identified to be the major secondary metabolites in E. glabra. The metabolites were screened using a broth dilution and microtitre spectrophotometry method and were selective against S. bovis at between 320 and 1077 [mu]g/ mL. The serrulatanes from E. glabra were probably responsible for the activity against acidosis that I observed in vitro, because they selectively inhibited lactateproducing bacteria. It is also possible that a synergy between serrulatanes and possibly other metabolites are responsible for the activity observed in vitro. The results from my experiments support the role that bioactive plants may have to replace the antibiotics that are added to livestock feed. Australian plants were identified containing compounds that were active against the bacterial processes responsible for ruminant acidosis. To my knowledge this is the first work undertaken to identify bioactive plants of Australia for their potential to prevent acidosis. I developed in vitro screening bioassays that targeted key indicators of acidosis. These bioassays enabled me to identify 5 plants from the 104 screened that could potentially control acidosis. One of these plants in particular, E. glabra, showed a level of activity in vitro that was comparable to antibiotic protection against acidosis. The exciting in vitro results were not demonstrated in vivo but only one dose level of E. glabra was used, which was based on the in vitro work. In contrast to the in vitro system the rumen is a continuous flow system with greater complexity and it is possible that the concentration of E. glabra that I used in vivo was not optimum. This places importance on future dose response experiments to confirm the efficacy of E. glabra in vivo.
Identifer | oai:union.ndltd.org:ADTP/194818 |
Date | January 2008 |
Creators | Hutton, Peter |
Publisher | University of Western Australia. School of Animal Biology |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Peter Hutton, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0026 seconds