The subjects for this study are two subglacial lakes -- Vostok and Concordia -- located in East Antarctica. Lake Vostok is the largest known subglacial lake on Earth. Melting and freezing at the ice-water contact are known to occur in both lakes. These internal processes are important subjects for numerical modeling. The precise knowledge of the lake's bathymetry and the distribution of unconsolidated sediments at the bottom of the lake are required boundary conditions for such modeling. The ultimate goal of this research was to develop 3D bathymetry models and to establish the distribution of unconsolidated sediments for both lakes. Joint interpretation of airborne gravity and seismic data was performed for Lake Vostok, revealing that the lake is hosted by consolidated sedimentary rocks. The modeling shows that Lake Vostok consists of two sub-basins: a larger, deeper one with water thickness exceeding 1000 m in the south and a shallower one with a water thickness of about 250 m in the north. The resulting 3D model has a substantially better correlation with seismic data than two previous models. Lake Concordia appears to be significantly shallower with water thicknesses not exceeding 200 m for all possible host rock densities. Since the lake is relatively shallow, the sediment layer cannot be resolved. A similar pattern of freezing and melting was observed in Lake Concordia and Lake Vostok: the deeper part of the lake lies under thinner ice and is dominated by the freezing of water at the ice bottom, while in the shallower part of the lake the overlying thicker ice melts. The analysis of seismic data in four different locations over Lake Vostok revealed the presence of unconsolidated sediments at the bottom of the lake. The sedimentary layer appears to be thicker (up to 400 m) in the northern basin, while its thickness does not exceed 300 m in the southern one. Four different sedimentation mechanisms were considered to explain how such a thick sedimentary layer was deposited in Lake Vostok under glacial conditions. The estimates show that none of the mechanisms considered is capable of depositing the observed sedimentary layer, revealing the pre-glacial origin of Lake Vostok.
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/3595 |
Date | 28 August 2008 |
Creators | Filina, Irina, 1974- |
Contributors | Blankenship, Donald D. |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | electronic |
Rights | Copyright © is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.002 seconds