Return to search

Construction de (phi,gamma)-modules en caractéristique p

Cette thèse est constituée de deux parties indépendantes, étudiant deux aspects de la théorie des (φ,Γ)-modules en caractéristique p. La première partie porte sur l'étude de la réduction modulo p des représentations cristallines irréductibles de dimension deux. Nous donnons, pour des poids k ≤ p², un calcul explicite de la réduction de V(k,a) pour a dans un disque fermé centré en zéro, généralisant ainsi des résultats déjà connus pour k ≤ 2p. En particulier, nous calculons le plus grand rayon possible pour ce disque, et montrons que dans certains cas, la réduction qui est constante à l'intérieur du disque change sur son bord. Dans la seconde partie, nous nous intéressons aux représentations d'un sous-groupe de Borel de GL[indice]2(Q[indice]p) sur un corps de caractéristique p, et en particulier à celles qui sont lisses, irréductibles et admettent un caractère central. Une méthode pour construire de telles représentations à partir de (φ,Γ)-modules irréductibles a été décrite par Colmez dans sa construction de la correspondance de Langlands p-adique. Après avoir donné un cadre un peu plus général dans lequel la construction de Colmez fonctionne encore, nous classifions les représentations irréductibles du Borel, prouvant que la construction précédente permet d'obtenir toutes les représentations de dimension infinie. Lorsque le corps des coefficients est fini, ou algébriquement clos, nous disposons d'une interprétation galoisienne des (φ,Γ)-modules irréductibles, et la classification précédente permet alors d'obtenir une correspondance entre ces représentations du Borel et des représentations galoisiennes modulaires.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00763785
Date06 November 2012
CreatorsVienney, Mathieu
PublisherEcole normale supérieure de lyon - ENS LYON
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0015 seconds