Return to search

Processing Desktop Work on a Large High-resolution Display: Studies and Designs

With the ever increasing amount of digital information, information workers desire more screen real estate to process their daily desktop work. Thanks to the quick advance in display technology, big screens are increasingly affordable and have been gradually adopted in desktop computing environments. A large wall-size high resolution display, a recent emerging class of display which possesses a huge visualization surface, could potentially benefit information processing work. In this dissertation we investigate such a large display as the primary working space for information processing work.
We firstly conducted a longitudinal diary study and three control experiments investigating effects of a large display on information processing work. The longitudinal diary study investigates large display use in a personal desktop computing context by comparing it with single- and dual-monitor. The three controlled experiments further investigate the effects of two factors determining resolution of a display—physical size and pixel-density on users’ performance and behaviors. The diary study reveals the distinct behavior patterns of large display users in partitioning screen space and managing windows, while the control experiments deeply reveal the effects of the physical size and pixel density of a display on different information processing tasks. Aside from studying a continuous large display, we also articulate how interior bezels within a tiled-monitor large display affect users’ performance and behaviors in basic visual search and action tasks via a series of controlled experiments. Based on the understanding of large display effects and users’ behavior patterns, we then design new interaction techniques to address a big challenge of working on a large display: managing overflowing windows. We design and implement a large display oriented window management system prototype: WallTop. It includes a set of interaction techniques that provide greater flexibility for managing windows. Usability tests show that users can quickly and easily learn the new techniques and apply them to realistic window management tasks with increased efficiency on a large display.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/31691
Date05 January 2012
CreatorsBi, Xiaojun
ContributorsBalakrishnan, Ravin
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0418 seconds