Return to search

UV laser patterning of silicone-based soft electrode grids

Roughly 123 million people worldwide are affected by conditions such as epilepsy, dementia, and cardiovascular diseases. Wearable electrodes are currently used to monitor these conditions short-term. Long-term monitoring would allow for predicting seizures and could be used as a preventive treatment. As opposed to the currently used electrodes, wearables that are intended for long-term use must be soft and flexible in order not to cause harm or discomfort for the user. The electrodes should also have high resolution, meaning that the electrode paths should be as narrow as possible without negatively affecting the performance of the electrode. In this thesis, soft and flexible electrode grids based on silicones are developed using UV laser patterning. Two different methods are evaluated: laser curing of silicones with the addition of a photoinitiator, and laser ablation of conductive composite. The results found in this thesis are that photocuring silicones gives a too low resolution to be useful for patterning soft electrode grids. UV laser ablation on the other hand showed high resolution while the electrodes retained stretchability. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-195198
Date January 2023
CreatorsJakobsson, Maria
PublisherLinköpings universitet, Institutionen för teknik och naturvetenskap, Linköpings universitet, Tekniska fakulteten
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds